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Abstract

Hydropower is a fast responding energy source and thus a perfect complement to the intermittency

of wind power. However, the e�ect wind energy has on conventional hydropower systems can be felt,

especially if the system is subject to several other environmental and maintenance constraints. The goal

of this paper is to develop a general method for optimizing hydropower operations of a realistic mul-

tireservoir hydropower system in a deregulated market setting when there is a stochastic wind input. The

approach used is stochastic dynamic programming (SDP). Currently, studies on hydropower operations

optimization with wind have involved linear programming or stochastic programming, which are based

on linearity. SDP, by contrast, is a stochastic optimization method that does not require assumptions

of linearity of the objective function. The true adaptive and stochastic nonlinear formulation of the

objective function can be applied to multiple time steps, and is e�cient for many time steps compared

to stochastic programming. The preliminary results for the deterministic optimization demonstrates the

potential of this method to guide operation of the hydro system knowing the state of the system. The

research will continue with optimizing under uncertain in�ows as well as wind.

Notation

w̄t forecasted wind power production in day t

∆wt wind power forecast deviation production in day t, wt − w̄t

Powert commitment made to the day-ahead power market

T the end of the time horizon for the SDP optimization algorithm

wt actual wind power production in day t
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BA Balancing Authority

BPA system the 10 modeled projects in the Columbia River Basin

FCRPS Federal Columbia River Power System

ISO Independent systems operator

MCP market clearing price, or the price at which the aggregate demand curve (which represents the con-

sumers' willingness to pay) matches the agrregated supply curve (which represents the suppliers'

marginal cost)

NLP non-linear programming

RPS Renewable Portfolio Standards

SDP Stochastic Dynamic Programming

USACE U.S. Army Corps of Engineers

USBR U.S. Bureau of Reclamation
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1 Introduction

In mid-2006, several states in the United States adopted Renewable Portfolio Standards (RPS), requiring

utilities operating within a state to provide a designated percentage of power that comes from renewable

resources by a certain target date. For example the California RPS sets a goal of 33 percent of total energy

produced in the state to be from renewable resources by 2025 [1]. The date and the percentage of total

power produced di�ers from state to state. This led to a vast expansion of renewable energy sources.

Renewable energy sources have may bene�ts such as no fuel costs and no carbon emissions from power

generations. However, the inherent intermittency in renewable energy sources such as wind prevent their

large-scale adoption in the power grid. When the penetration level of wind energy is low (on the order of

1 to 2 percent of total energy generation), the e�ects of wind intermittency can be ignored. However, at

higher penetration levels, the stochastic nature of wind becomes a signi�cant issue, requiring a large amount

of reserves to prevent sags in supply when there is no wind available [2]. To provide a frame of reference,

the average retail price of electricity in the US in 2008 was approximately $100/MWh, while the average

cost of producing wind energy from new wind power projects built in 2009 in the US was about $61/MWh.

Currently the forecast errors as a fraction of the wind power plant capacity usually average about 5 percent

in hourly time scales, and between 15 to 25 percent on daily time scales [3]. However, forecast errors of 20

to 50 percent are not uncommon [4].

Because of simple physics of the power grid and the current lack of large-scale energy storage, power

supplied has to be exactly equal to the power consumed. However, this does not necessarily mean that

the power consumed equals the power demanded. Rather, power supply that does not meet the quantity

demanded results in a decrease in frequency in the power system which a�ects the quality and reliability of

the power supplied to consumers. To avoid this, it is the role of the system operator or balancing authority

to ensure the reliability of power systems by employing regulation (hour-to-hour) and real-time (minute-to-

minute) balancing reserves [5].

Exisiting hydropower systems with large storage capabilities can provide this �exibility to the system at

a low environmental and economic cost. However, the use of hydropower to provide capacity reserves may

lead to the violation of other constraints on the hydropower system, such as �ood-storage, environmental

releases, and maintaining reservoir levels for navigation and recreation. Thus, careful coordination is required

in order to prevent the violation of these constraints [6].

The goal of this paper is to develop a general methodology for the optimization of the daily operation of a

realistic multireservoir system in a deregulated market setting when there is a stochastic wind forcing in the

system. Our approach is from the perspective of a balancing authority that controls a hydropower system
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and is trying to balance wind energy using the available hydropower storage in the system. A stochastic

dynamic approach will be utilized that will take advantage of the sequential decision making process that

occurs during the planning process. Power commitment to the day-ahead market will be used as a hedging

strategy for wind imbalances.

1.1 Power Market overview

Power market deregulation occurred to provide a more e�cient trading system between power providers and

consumers. An e�cient market means that (1) the output is produced by the cheapest suppliers, (2) it is

consumed by those most willing to pay for it, and (3) the right amount is produced. To act competitively in

the power market, power suppliers should act as �price takers,� or optimize its production as if it could not

a�ect the market price, i.e. it produces to the point where its marginal cost equals the market price. This

means suppliers will take the market-clearing price (MCP) and use this price to plan how much to produce,

then adjust their price if they notice excess supply or demand in the market [5].

A typical system operating scheme follows a sequence of events: a day-ahead forecast of the demand

is made for each hour of the following day. Power generators bid for producing energy and operating

services for the next day and the Independent System Operator (ISO) or balancing authority (BA) schedules

an appropriate mix of energy generating resources to meet demand, spinning reserves and transmission

requirements and constraints [4].

There are two dominant modes of trading: bilateral trading and competitive electricity pools. For bilateral

trading systems, two parties (a buyer and a seller) negotiate a price, quantity and auxiliary conditions for

the seller to give to the buyer at a given time. Bilateral agreements tend to vary from di�erent negotiations,

so the contracts have to be approved by the ISO or BA. In competitive electricity pools, many buyer and

sellers participate in a single market cleared by an independent third party (typically, the ISO). Each seller

(buyer) submits an o�er (bid) for energy at a desired price. The ISO then aggregates these bids and o�ers

to form an aggregate supply and demand curve. The intersection of these curves determines the market

clearing price. Suppliers that submit bids below this price and buyers that submit o�ers above this price are

scheduled. All scheduled parties pay or are paid the MCP.

1.2 Literature Review

Much of the early research on the coordination of hydropower and wind power has so far been heavily focused

in Europe and Canada [7], but the �eld has recently gained momentum in the United States [8, 9, 10]. A

signi�cant amount of research has focused on studies such as the one conducted by Castronuovo and Lopes
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[11], where pumped storage hydro is coupled with a wind farm to reduce the uncertainty of wind power

production in the system. However, large multireservoir systems with storage capacities can also have

enough �exibility to handle short-term �uctuations in wind forecast without pumped storage. However, this

requires proper planning [12, 13, 14].

The power generation functions for hydropower plants are nonlinear, thus much of the previous research

has focused on using mixed-integer linear programming as their method of planning for hydropower produc-

tion [14, 12, 15]. The intermittent nature of wind power and the di�culties experienced in forecasting wind

necessitates a stochastic approach to the optimization of hydropower production. Previous research employ

scenario trees with scenario reduction schemes to decrease the number of decision variables for mixed-integer

linear programming [15, 12]. Our research uses a stochastic dynamic programming approach to simulate

day-to-day decisions of a typical balancing authority, while maintaining the nonlinearity of the generation

function by using nonlinear programming to optimize for the best decisions on hourly timescale. Wind fore-

cast is modeled as a Markov process, while the forecast deviations are modeled as a conditional distribution

to the forecast.

Coordination of the wind and hydropower production has been shown to be mutually bene�cial to both

hydropower and wind power producers, particularly in the reduction of penalty payments for wind deviations

[14, 12, 16, 15]. However, the hydropower producers can experience a loss in pro�t when operated jointly

with the wind, especially when wind penetration levels are high [14, 9]. Thus a coordinated bidding strategy

may only be tractable to hydropower producers if there is a shared pro�t scheme between the hydro and

wind power producers [13], or if the hydro and wind are both owned by the same utility [15, 14, 16]. In light

of this, the focus of this research is on investigating the ability of the hydropower operator to pro�t from

bidding on the day-ahead market separately from the wind power producer.

2 Optimizing the operations for the hydropower system with wind

Optimization of the multireservoir hydropower system is performed using a time-decomposition approach.

On the daily timescale, stochastic dynamic programming (SDP) is used to simulate decisions made by the

BA for the day-ahead market. The objective at each stage t (i.e. at each day) is to maximize the present

and future bene�ts by changing the daily power commitment. The state variables are the storages at each

of the reservoirs where release decisions are being made st, and the wind power forecast w̄t.

The decision variable is the day-ahead power commitment, Powert (in MWh). A positive value for the

day-ahead commitment indicates that the power is to be sold in the day-ahead market, while a negative value

for the day-ahead commitment indicates that the power is to be bought from the day-ahead market. The
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power production by the hydropower system (and subsequently, the releases from each reservoir) is made

based on the power commitment, the occurrence of stochastic wind power, and contracted loads out of and

within the system. Here, we assume that the in�ows into the system are known.

A backwards recursion algorithm is used to calculate the values of being at the di�erent states at any given

time. Starting from T the end of the horizon, at each time step t = T, T − 1, ..., 1 the algorithm maximizes

equation (). For stage t = T , a terminal value function is needed. It is assumed that the BA prefers that

the reservoirs be at a particular state. A linear penalty function is applied for states that deviate from the

target state. This penalty function is used as the terminal value function for the backwards recursion SDP.

The non-linear programming (NLP) environment optimizes the releases made, power bought, and power

sold on the hour-ahead market as determined by the forecasted load, and commitment to the day-ahead

market on an hourly basis. The deterministic non-linear program is solved for each forecasted wind scenario,

w̄t and each deviation from the forecast, ∆wt. The NLP returns to the SDP algorithm the bene�t function

and the corresponding releases from the reservoirs as a function of the wind power and the day-ahead power

commitment Rt(∆wt, w̄t, Powert).

To calculate the future bene�ts, the states for the next time step are determined based on the releases

made (which a�ects the storage at the di�erent reservoirs) and also the wind forecast for the current day

(which a�ects the wind forecast for the next day). To evaluate values for states that fall between the discrete

state space points, an interpolation method is used.

Once the optimization is carried out to the end of the time horizon, the algorithm outputs a matrix of

the value function V (st) for each state s and each stage t, as well as the optimal policy corresponding the

the value function. To apply the policy that is suggested by the optimization , a one-step reoptimization is

performed using the future value of water for the next timestep (as calculated by the SDP algorithm) as the

terminal value function.

Oftentimes, the model used in the SDP optimization is simpler compared to the model used in the

one-step reoptimization. This is because as the state space gets larger, the runtimes for the SDP increase

exponentially, therefore a simple, robust model would serve to provide an estimate of the future value of

water in the next day, and a more complicated simulation model can be used to perform the reoptimization

step. Tejada-Guibert et al. [17] show that the advantages of reoptimizing with the value functions obtained

using the SDP optimization provides a better representation of actual allowable �ows in the system and also

allows for more complex objective functions.
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Figure 1: Average hourly wind generation pro�le for the month of October, obtained using data provided by
the BPA from the period 2008 - 2012. The wind power production at each hour is given on the vertical axis
as the fraction of the total daily wind power production.

3 Wind and load modeling

3.1 Modeling wind uncertainty

We consider a model for the aggregate of wind power production over all wind farms in our model. Let wt

be the actual wind power production for day t, a function of the forecasted wind w̄tand the wind forecast

deviation ∆wt for day t shown in equation (1).

wt = w̄t + ∆wt (1)

To obtain the distribution of wind within the day, analysis was performed on historical data for hourly

aggregated wind power production in a day for each month of the year to obtain an average wind generation

pro�le. An example of a wind generation pro�le is shown in �gure 1. The set of hourly wind generation

fractions is {shapeh} for a given month. Each month has a di�erent shape pro�le.

The wind power production for each hour in day t is given in equation (2).

wt,h = (w̄t + ∆wt) ∗ shapeh (2)
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To maintain the persistence of wind from day to day, the daily wind forecast w̄t is modeled as a Markov

process. Assume that the wind forecast can be assigned to one of n intervals, or states at time t. Given

that w̄t is in one of n states (e.g. state i), it transitions to another state j in the next time period with

some probability Pij = Pr[w̄t+1 = j|w̄t = i]. The Markov transition matrix P = {Pij} is calculated using

historical data using the following steps:

1. Divide the available historical data for a particular month into n intervals spaced equally between the

maximum and minimum observed data points

2. Increment element (i, j) in C, the n by n square matrix which counts the number of times the wind at

time t falls in interval j given that the wind at time t− 1 falls in interval i, as de�ned in step 1.

3. Divide each element in C by the total number of observations to get the transition probability from i

to j.

The deviations from forecast are also modeled conditional on w̄t. Historical daily deviations from forecast

for each month are �rst calculated using equation (3).

∆wt =
wt − w̄t

w̄t
(3)

Then, the ∆wt are sorted according to the state that the corresponding wind forecast w̄tis in. After

sorting, conditional distributions f(∆wt|w̄t) are �t to the ∆wt in each interval.

3.2 Modeling system load

On daily time scales, the system load is well-behaved and can be predicted with a much higher accuracy

than with wind. Thus, for our purposes the load is assumed to be deterministic from day-to-day. Like wind,

an hourly load pro�le is assumed for each month, determined from historical data. An example of a daily

load pro�le for the month of October based on our data set is shown in �gure 2. When �gure 2 and �gure 1

are compared, note that in general the wind power production is uncorrelated with load.

Assuming we have a forecast of the total load for the next day Loadt, the hourly load is then shown in

equation (4).

Loadt,h = Loadt ∗ profileh (4)
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Figure 2: Average hourly load pro�le for the month of October, obtained using data provided by the BPA
from the period 2008 - 2012. The numbers on the vertical axis are the fractions of total daily load that occur
in a particular hour of the day.

4 Results and Discussion

4.1 Case study

Our case study is modeled after 10 projects in the Federal Columbia River Power system (FCRPS).The

FCRPS are projects owned and operated by the US Army Corps of Engineers (USACE) and the Bureau of

Reclamation (USBR) in the Columbia River Basin, shown in �gure 3. The Columbia River Basin spans 7

states in two countries (Washington, Oregon, Montana, Idaho, and a small part of California and Nevada in

the United States; British Columbia in Canada).

The Bonneville Power Authority (BPA) acts as the BA for a large part of the Paci�c Northwest. In

addition to providing power to a large part of the Paci�c Northwest, the FCRPS are also operated for

navigation, recreation, irrigation, and water supply. The operation of the dams within the FCRPS are also

constrained by the international Columbia River Treaty that outline allocations of water to each country

as well as to provide �ows for �sh species protected under the Endangered Species Act. The USACE and

USBR sets the contraints corresponding to all the non-power uses at their projects, and BPA schedules and

dispatches power within these constraints. BPA markets the power generated at the FCRPS projects and

also owns and operates over 16,000 miles of transmission lines that deliver electricity to over 75% of the
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Paci�c Northwest [18].

The wind farms that are interconnected with the BPA system are mostly located in the Columbia River

Gorge, between the Bonneville and Lower Granite Dams. Other smaller projects are located near the coast in

southwestern Washington, southeastern Oregon, southeast Idaho and western Montana. These wind projects

have a collective nameplate capacity of 5000 MW as of 2012. The lack of geographical diversity in wind

farms leads to an �all or nothing� e�ect with wind power generation. The BPA currently dispatches projects

in the FCRPS to serve as balancing resources for when wind unexpectedly dies down.

We model 10 major projects located on the Upper Columbia, Lower Snake and Lower Columbia reaches

of the Columbia River Basin. This will be referred to in later sections as the BPA system. A schematic of

the system is shown in �gure 4.

4.2 Deterministic Optimization

First, a deterministic optimization is performed. The deterministic optimization provides a point of com-

parison for the stochastic algorithm, as well as to verify that the objective function formulation is providing

reasonable results.

Wind, load, in�ows, prices and other system data was obtained from the BPA for the week of October

15, 2011 to October 21, 2011. Release decisions are assumed to be made from Grand Coulee dam, the most

upstream project in �gure 4. The state space is the storage at Grand Coulee dam. All projects on the Lower

Snake River and downstream of Grand Coulee are assumed to operate as run-of-river projects. In�ows into

Grand Coulee and Lower Granite dam are assumed to be known on a day-ahead basis. This is a reasonable

assumption as the upstream reaches from these projects are regulated (as can be seen in �gure 3).

The period in which the data was obtained corresponds to a drawdown operation of the reservoir. In order

that the reservoir is not drained too quickly, the target storage is set to be the storage just below the current

storage. Then, the terminal value function at the end of the 7-day optimization horizon is constructed. This

function, shown in �gure 5 increases rapidly in lower objective function values and levels out as it approaches

the target storage. Thus, at lower storage levels, the algorithm would like to conserve water, while at higher

storage levels, the algorithm would release as much water as possible.

Some samples of the SDP output for di�erent storage levels in GCL for stage 7 are shown in table 1. For

each storage level, the immediate and future bene�ts B(Powert) and V (st+1) are shown for the maximum,

minimim and the mid-point of the allowable day-ahead commitment Powert along with the average hourly

releases, power sold, and storage at the next stage. Generally, committing to buy power rather than to sell

power in the day-ahead market corresponds to lower releases and lower immediate bene�ts. The power sold
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Figure 3: Hydroelectiric dams in the Columbia River Basin. Source: http://www.nwd-
wc.usace.army.mil/report/colmap.htm
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Figure 4: Schematic of the model used in our case study. The numbers in blue are the travel times from one
reservoir to another. There are nonfederal projects between Chief Joseph and McNary which are not shown
here. They are modeled as run-of-river projects. Source: Steve Barton, BPA.

Figure 5: The terminal value function as a function of the di�erent storage levels
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Table 1: Sample of SDP output for di�erent states (storage levels) for stage 7 (10/21/2013) at Grand Coulee
(GCL) dam. For each storage level, the immediate and future bene�ts B(Powert) and V (st+1) are shown
for the maximum, minimim and the mid-point of the allowable day-ahead commitment Powert along with
the average hourly releases, power sold, and storage at the next stage. Storages are in units of 107cubic feet.
Results indicate that for Grand Coulee storages below 7.91× 107 cubic feet, the optimal policy is to commit
to buy the maximum allowable day-ahead commitment, while for Grand Coulee storages of above 7.91× 107

cubic feet, the optimal policy is to commit to selling the maximum allowable day-ahead commitment. For
storages around 7.91× 107 the optimal policy is to buy Powert = 880MW on the day-ahead market.

st Powert B(Powert) average release (kcfs) average P sell
h (MW) st+1 V (st + 1) V (st)

1.13
-1750 -8.60E+05 64.3 250 1.22 -1.8E+07 -1.91E+07
0 1.56E+05 96.9 250 0.94 -2.1E+07 -2.06E+07

1750 1.17E+06 129.7 250 0.65 -2.3E+07 -2.22E+07

7.91
-1750 -8.60E+05 62.1 250 8.01 2.60E+07 2.51E+07
0 1.56E+05 93.6 250 7.74 2.49E+07 2.51E+07

1750 1.17E+06 125.3 250 7.47 2.38E+07 2.50E+07

21.46
-1750 -8.60E+05 59.0 250 21.59 4.00E+07 3.91E+07
0 1.56E+05 88.9 250 21.33 4.00E+07 4.02E+07

1750 1.17E+06 118.9 250 21.07 4.00E+07 4.12E+07

on the hour-ahead market P sell
h is kept to its maximum for all the di�erent day-ahead commitment policies

and storages, indicating that the bounds on this variable are binding constraints. Thus, the release decisions

change based only the day-ahead commitment. However, low releases also result in the system being in a

higher state space and thus garnering higher future bene�ts.

The tradeo� between immediate and future bene�ts is di�erent between di�erent states. For storages

below 7.91 × 107 cubic feet, the future value of water outweights the immediate bene�ts gained by selling

on the day-ahead market. The optimal policy is to commit to buy the maximum allowable day-ahead

commitment, or Powert∗ = −1750MW . For storages above 7.91 × 107cubic feet, the immediate bene�ts

gained by selling on the day-ahead market outweigh the loss in future bene�ts from releasing the water

from the reservoir. Therefore, the optimal policy is to commit to sell the maximum allowable day-ahead

commitment, or Powert∗ = 1750MW . Finally, the optimal policy for storages around 7.91×107 is somewhere

in between that of the lower and higher storages.

An example of the generation and load curves for the state s = 1.13×107cubic feet and Powert = 0MW

for stage 7 is shown in �gure 6. As expected, the sum of the loads (Load and power sold) are equal to the

sum of the wind and hydro generations.

The evolution of the value function over each storage and for each stage is shown in �gure . The x-axis

is reversed to correspond to the backwards recursion algorithm, which starts at the terminal stage T = 7

and step backwards in time towards t = 1. Each line represents the value function of a particular storage

at Grand Coulee. The value functions for di�erent states evolve di�erently through time. Storages below

7.91× 107 cubic feet have decreasing value functions over time, while storages above 14.68× 107 cubic feet
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Figure 6: Example of the hourly generation and load curves output by the NLP algorithm for s = 1.13 ×
107cubic feet and Powert = 0MW for stage 7.
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Figure 7: The value function at di�erent states over the optimization horizon. The x-axis is reversed
to correspond to the backwards recursion algorithm, which starts at the terminal stage T = 7 and step
backwards in time towards t = 1. Each line represents the value function of a particular storage at Grand
Coulee.

have increasing value functions over time.

Finally, the value function at t=1 is used for a one-step reoptimization for the current storage level

scurr = 21.07× 107cubic feet. The optimal policy is to commit to sell the maximum day-ahead commitment

Power∗t = 1750MW resulting in a value of $41.2 million.

5 Conclusion

The preliminary results for the deterministic optimization demonstrates the potential of this method to guide

operation of the hydro system knowing the state of the system. The research will continue with optimizing

under uncertain in�ows as well as wind.
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