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Abstract

Flow in the draft tube of a hydraulic turbine operating under off-design conditions is
very complex. The instability of the swirling flow may lead to the formation of a helical
precessing vortex called the “vortex rope”. The vortex rope causes efficiency reduction,
severe pressure fluctuation, and even structural vibration.

The primary objectives of the present study are to model and analyze the vortex
rope formation using high fidelity numerical simulations. In particular, this work aims
to understand the fundamental physical processes governing the formation of the vortex
rope, and to investigate the capability of turbulence models to simulate this complex
flow. Furthermore, mitigation of the vortex rope formation is addressed. Specifically, a
vortex rope control technique, which includes injection of water from the runner crown
tip to the inlet of the draft tube, is numerically studied.

A systematic approach is considered in this study starting from the simplest and
advancing towards the most complicated test case. First, steady simulations are carried
out for axisymmetric and three-dimensional grids in a simplified axisymmetric geome-
try. It is shown that steady simulations with Reynolds-averaged Navier-Stokes (RANS)
models cannot resolve the vortex rope, and give identical symmetric results for both the
axisymmetric and three-dimensional flow geometries. These RANS simulations under-
predict the axial velocity by at least 14%, and turbulent kinetic energy (TKE) by at
least 40%, near the center of the draft tube even quite close to the design condition.
Moving farther from the design point, models fail in giving the correct levels of the axial
velocity in the draft tube. This is attributed to the underprediction of TKE production
and diffusion near the center of the draft tube where the vortex rope forms. Hence, a
new RANS model taking into account the extra production and diffusion of TKE due to
vortex rope formation is developed, which can successfully predict the mean flow velocity
with as much as 37% improvements in comparison with the realizable k-ε model.

Then, unsteady simulations are performed, where it is concluded that Unsteady
RANS (URANS) models cannot capture the self-induced unsteadiness of the vortex rope,
but instead give steady solutions. The hybrid URANS/large eddy simulation (LES) mod-
els are proposed to be used in unsteady simulations of the vortex rope. Specifically, a
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new hybrid URANS/LES model in the framework of partially-averaged Navier-Stokes
(PANS) modeling is developed. This new model is one of the main contributions of
the present study. The newly developed PANS model is used in unsteady numerical
simulations of two turbulent swirling flows containing vortex rope formation and break-
down, namely swirling flow through an abrupt expansion and the flow in the FLINDT
draft tube, a model-scale draft tube of a Francis turbine. The present PANS model
accurately predicts time-averaged and root-mean-square (rms) velocities in the case of
the abrupt expansion, while it is shown to be superior to the delayed detached eddy
simulation (DDES) and shear stress transport (SST) k-ω models. Predictions of the
reattachment length using the present model shows 14% and 23% improvements com-
pared to the DDES and the SST k-ω models, respectively. For the case of the FLINDT
draft tube, four test cases covering a wide range of operating conditions from 70% to
110% of the flow rate at the best efficiency point (BEP) are considered, and numerical
results of PANS simulations are compared with those from RANS/URANS simulations
and experimental data. It is shown that RANS and PANS both can predict the flow
behavior close to the BEP operating condition. However, RANS results deviate con-
siderably from the experimental data as the operating condition moves away from the
BEP. The pressure recovery factor predicted by the RANS model shows more than 13%
and 58% overprediction when the flow rate decreases to 91% and 70% of the flow rate at
BEP respectively. Predictions can be improved dramatically using the present unsteady
PANS simulations. Specifically, the pressure recovery factor is predicted by less than 4%
and 6% deviation for these two operating conditions. Furthermore, transient features
of the flow that cannot be resolved using RANS/URANS simulations, e.g., vortex rope
formation and precession, is well captured using PANS simulations. The frequency of the
vortex rope precession, which causes severe fluctuations and vibrations, is well predicted
by only about 2.7% deviation from the experimental data.

Finally, the physical mechanism behind the formation of the vortex rope is analyzed,
and it is confirmed that the development of the vortex rope is associated with formation
of a stagnant region at the center of the draft tube. Based on this observation, a vortex
rope elimination method consisting of water jet injection to the draft tube is introduced
and numerically assessed. It is shown that a small fraction of water (a few percent of the
total flow rate) centrally injected to the inlet of the draft tube can eliminate the stagnant
region and mitigate the formation of the vortex rope. This results in improvement of the
draft tube performance and reduction of hydraulic losses. Specifically in the case of the
simplified FLINDT draft tube, the loss coefficient can be reduced by as much as 50% and
14% when the turbine operates with 91% and 70% of the BEP flow rate, respectively.
In addition, reduction (by about 1/3 in the case with 70% of BEP flow rate) of strong
pressure fluctuations leads to more reliable operation of the turbine.
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Chapter 1

Introduction

“Water is the driver of nature.” - Leonardo da Vinci

Water has always been an essential resource for mankind. It is vital for the basic needs

of food production, sanitation and health, and is increasingly substantial for sustainable

development. In the course of human history, water has been inextricably linked to

energy. This energy has been exploited for centuries. Ancient Greeks used water wheels,

placed in a river, for grinding wheat into flour more than 2,000 years ago. In the late

19th century, the invention of the electrical generator produced a new way to exploit

energy from the flowing water. By using water turbines together with generators, a

reliable source of electricity was created. This source of electricity which extracts the

energy from the flowing water is called hydroelectric power or hydropower.

Hydropower relies on the water cycle. Solar energy evaporates water on the surface

of the earth (oceans and rivers) and draws it upward as water vapor. This water vapor

condenses into clouds and falls back onto the surface as precipitation. As gravity drives

the water, moving it from higher to lower elevations, energy can be extracted and used to

generate electricity. Finally, the water flows through rivers back into the oceans, where

it can evaporate and begin the cycle over again. Hydropower, therefore, is a renewable

energy source as long as the water cycle continues.
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1.1 Hydropower

1.1.1 Hydropower’s Place as an Energy Source

The demand for electricity is constantly increasing because of demographic growth and

development prospects. Worldwide projections predict that the net electricity generation

will increase from 20.2 trillion kilo watt-hours in 2010 to 39.0 trillion kilo watt-hours in

2040 [1]. Figure 1.1 shows the evolution of the predicted sources of electricity generation

from 2010 until 2040.

Figure 1.1: World net electricity generation by energy source, 2010-2040 (trillion kilo watt-hours).
Source: U.S. Energy Information Administration [1].

The use of renewable resources is seen as a key element in energy policy, as is reducing

emissions from carbon sources and decoupling energy costs from oil prices. In 2012, the

share of renewable resources in electricity production was around 21.7%, with hydropower

being the leading renewable energy source as shown in Fig. 1.2.

Hydropower presents the advantage of avoiding emissions of gases in spite of other

environmental impacts on the fauna, flora, and sediments. The social impacts are, on

the one hand, detrimental because of population displacements and land transformation,

but on the other hand positive as hydropower offers the possibility to mitigate flooding,

enabling better fluvial navigation and irrigation, and providing employment. Moreover,

the drawbacks related to hydropower production can be mitigated by taking appropriate

counter-measures at the early stages of the projects.

Hydropower is currently being utilized in 150 countries with around 27,000 generating
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Figure 1.2: Renewable energy share of global electricity production, 2012. Source: REN21 [2].

units. In 2012, hydropower production covered 16.5% of the world electricity needs with

a total installed capacity estimated to be around 990 GW [2]. The regional distribution

of the total production capacity is illustrated in Fig. 1.3 with about 23% of the installed

capacity in Europe, 35% in Asia Pacific, 19% in North America, 20% in South America,

and the remaining 3% shared between Africa and the Middle East.

Figure 1.3: Regional distribution of the total hydroelectricity production capacity, 2012. Data
source: British Petroleum [3].

However, the currently installed capacity represents only 39.7% of the economically

exploitable and 22.2% of the technically exploitable resources [4]. Therefore, hydropower

still has a high potential for growth. Regarding the development of hydroelectric pro-

duction, it can be decomposed into four main areas

• Exploitation of new hydropower resources: the main contribution is expected to

come from the completion of hydro facilities in Asia.

• Refurbishment of existing power plants: a gain of efficiency of old electromechanical
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equipment can represent a significant increase in the production capacity. This is

mainly the case in Europe and North America for facilities that are around 50

years old.

• Rehabilitation of old power plants: older facilities in Europe and North America

are subject to full re-equipment considering also new constructions in order to

increase drastically the capacity of a power plant.

• Small hydro: This is related to rural areas where electrification can be achieved

through small-hydro with reduced environmental impacts.

One aspect of development of the hydropower market is the increasing need for power

plants able to stabilize the global power network by allowing quick set point changes.

The increase of renewable energy resources such as wind power, whose availability can-

not be ensured, will represent a source of disturbance for the power grid. Therefore,

hydropower plants are considered as the solution to restore grid stability by allowing

hydraulic machines, especially Francis turbines, to quickly change operating points over

a large range of heads and power in order to cover the variation in the electrical de-

mand. New technologies like variable speed generators also provide an additional degree

of freedom for reducing time response of power plants and offering flexibility to power

management.

Modern hydropower has to face new challenges related to completely different ex-

ploitation strategies leading to an increase of the solicitation of the entire machine.

Thus, hydraulic machines are increasingly subject to off-design operation, startup and

shutdown sequences, and quick set point changes. In such off-design operating condi-

tions, dynamic behavior of different components in the hydraulic system must be under-

stood and controlled to ensure the reliability and the safety of energy production for the

power grid. This requires developing appropriate experimental and numerical tools and

methods for a better understanding and thus a more accurate prediction of operating

conditions of hydropower plants.

1.1.2 Principles of Hydroturbines

The role of a hydroturbine (also known as a hydraulic turbine or a water turbine) is

to convert hydraulic power Ẇhydraulic into useful mechanical power Ẇmechanical with the

highest possible hydraulic efficiency, which is given by
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η =
Ẇmechanical

Ẇhydraulic

=
Tω

ρgQH
(1.1)

where T is the torque extracted by the machine, ω is the angular velocity of the machine,

ρ is the fluid (water) density, Q is the volume flow rate, and H is the hydraulic head.

According to the hydrology and the exploitation strategy of a given hydraulic project,

the nominal head and flow rate are determined for a power plant. Then, depending on the

number of machines and their rotational speed, which is related to the grid frequency and

the number of poles in the generator, the type of hydroturbine can be chosen. Figure 1.4

shows the domain of application of the different types of hydroturbines as function of

the nominal net head Hn (meters of water) and the nominal discharge Q (m3/s) of

the machine. Typically, for high, medium, and low head, Pelton, Francis, and Kaplan

turbines are respectively chosen (see Fig. 1.4). However, the final decision on the type

of turbine is also based on the construction and maintenance costs and the flexibility of

operation.

Because of its reliability, high efficiency, and wide operating range, the Francis turbine

is widely used in hydropower plants. Francis turbines are the most common hydrotur-

bine in use today [6]. They cover a head range from 20 to 700 meters and an output

power range from a few kilowatts up to one gigawatt. Some of the world’s well-known

hydropower plants that use Francis turbines are Three Gorges in China with 22,400 MW

(32 × 700 MW), Itaipu on the border between Brazil and Paraguay with 14,000 MW

(20 × 700 MW), Grand Coulee in the United States with 6,809 MW, and Hoover Dam

in the United States with 2,074 MW [7]. Figure 1.5 shows the installation of a Francis

turbine at Grand Coulee dam’s third powerplant in 1974.

Figure 1.6 shows a simplified view of a hydropower plant employing a Francis turbine.

A Francis turbine is a mixed-flow machine where flow enters radially and exits axially

(c.f., Kaplan or propeller turbine which is an axial-flow machine where flow enters and

exits axially). A Francis turbine is composed of five main components: spiral casing, stay

vanes, guide vanes (wicket gates), runner, and draft tube, as shown in Fig 1.7. The stored

water behind a dam reaches the spiral casing through the penstock. The spiral shape of

the casing permits the conversion of the flow direction from axial to radial and balances

flow distribution in the stay vane channels. The guide vanes distribute and control the

incoming flow angular momentum to the runner. This distributor mechanism consists of

a large number of guide vanes (e.g., 20 as in Fig. 1.7) around the circumference, which

are simultaneously adjustable. The opening angle of the guide vanes controls the flow
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Figure 1.4: Typical application range for various turbines, given as a function of nominal net
head (Hn) and flow rate (Q). Source: Franc et al. [5].

rate through the runner. The runner is made up of several fixed curved blades (see also

Fig. 1.5). The curved shape of the blade induces the necessary pressure difference on

the two sides of the blade that causes the rotational motion. The axis of the runner is

coupled to the generator, which converts the rotational motion into electric power. The

water flows through the turbine, then through the draft tube, and finally to the tail race

downstream of the draft tube exit.

Head, flow rate, and angular velocity determine the flow conditions of a Francis

turbine. The characteristics of the machine are represented on a ϕ vs. ψ hill chart

(obtained from dimensional analysis) for a given angular velocity (see Fig. 1.8). The

dimensionless coefficients of the head ψ and of the flow rate ϕ allow comparison with

other machines of different dimensions and rotational speeds and are defined as [10]

Head (energy) coefficient

ψ =
2gH

ω2R2
(1.2)
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Figure 1.5: Installation of a Francis turbine at Grand Coulee dam’s third powerplant (December,
1974). Source: U.S. Bureau of Reclamation photo archives.

Flow rate (discharge) coefficient

ϕ =
Q

πωR3
(1.3)

Here H is the turbine head, Q is the turbine flow rate, ω is the runner angular

velocity, and R is the runner radius. The specific speed νs is a non-dimensional parameter

based on the best efficiency point (nominal discharge, head and rotational speed) of the

machine and defines the main characteristics of the runner design. The specific speed of

the machine is defined as follows [10]

νs = ω
(Q/π)1/2

(2gH)3/4
=
ϕ1/2

ψ3/4
(1.4)

Depending on the specific speed, Francis turbines are divided into three types: low-

(νs ≤ 0.35), medium-, and high-speed (νs ≥ 0.6). For high specific speed machines the

draft tube is the most critical component with respect to losses [11].
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Figure 1.6: Vertical cross section of a hydropower plant. Modified from Henry [8].

1.2 Flow in the Draft Tube of a Francis Turbine

As discussed in the previous section, the draft tube is the last component of a Francis

turbine connecting the flow exiting from the runner to the tail-water region. The main

goal of a Francis turbine draft tube is to decelerate the flow exiting the runner, thereby

converting the excess of kinetic energy into static head. The draft tube increases the

efficiency of the plant at the best efficiency point (BEP) and makes it possible to locate

the turbine above the tail-water. In practice, the hydraulic performance of a draft tube

is quantified by the pressure recovery coefficient given by the following [12]

χ ≡

(
p
ρ + gz

)
outlet

−
(
p
ρ + gz

)
inlet

Q2

2A2
inlet

[
1−

(
Ainlet
Aoutlet

)2] (1.5)

The numerator in Eq. 1.5 is the difference in potential energy and the denominator

is the difference in kinetic energy from inlet to outlet of the draft tube. For an ideal
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Figure 1.7: Francis turbine components. Source: Zobeiri [9]

Figure 1.8: Sample hill chart of a Francis turbine, where isocontours of efficiency (thick lines) are
plotted as a function of head coefficient and flow rate coefficient. Thin lines represent constant
wicket gate opening angles. Source: Mauri [11]

draft tube with no losses the pressure recovery factor is equal to one. However, in

practice, losses including friction, flow separation, and flow blockage result in lower

pressure recoveries.

For constructional reasons most plants have elbow-type draft tubes and often one or

two piers are included. As depicted in Fig. 1.9, this type of draft tube can be decomposed

into three parts: the inlet cone, the elbow part, and the last straight divergent diffuser.
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Most of the pressure recovery occurs in the draft tube inlet cone [12]. Modern hydraulic

turbines have compact elbow draft tubes, with a rather short cone. As a result, the draft

tube hydrodynamics is very complex due to the combination of swirling flow deceleration

with flow direction and cross-section shape/area changes.

Figure 1.9: Components of an elbow draft tube

Theoretically, the flow leaving the runner and ingested by the draft tube is almost

purely axial at the best efficiency point (see Fig. 1.10(b) where Vt = 0 and V = Va).

However, in practice, to prevent flow separation from the draft tube wall and to minimize

hydraulic losses associated with kinetic energy-to-static pressure conversion in the draft

tube, a certain level of residual swirl is provided at the runner outlet. This swirling flow

at the draft tube inlet is tuned for optimal performance at the best efficiency operating

point. However, the swirl ingested by the draft tube departs significantly from the

best configuration as the turbine discharge varies, and hydroturbines, especially Francis

turbines, operating at off-design conditions often have a high residual swirl at the draft

tube inlet.

Figure 1.10: Velocity triangles at runner exit for (a) part-load, (b) best efficiency point, and
(c) full-load. U is the runner velocity, W is the relative velocity, and V is the absolute velocity
leaving the runner and ingested by the draft tube, with Va and Vt being axial and circumferential
(swirl) components.
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The instability of decelerated swirling flow in the draft tube may lead to efficiency

reduction and severe pressure fluctuations. These pressure fluctuations become more

dangerous if their corresponding frequency approaches the natural frequency of the power

plant structures. This can result in vibration of the whole installation [13]. In general,

vibration and pounding noise, periodic variations in power output (power swing), vertical

movement of the runner, and penstock vibrations are all attributed to the draft tube

flow instabilities [14].

Depending on the operating conditions, two forms of the flow instability can be

observed (Fig. 1.11). At part-load conditions, for which the flow rate is lower than

the one at the BEP, the flow has a positive absolute circumferential velocity in the

same sense as the runner revolution (see Fig. 1.10(a) where Vt and U are in the same

direction). In this case a helical precessing vortex called the “vortex rope” develops in

the draft tube with the frequency of precession of about 0.2-0.4 of the runner’s rotation

frequency [13]. At full-load conditions corresponding to a higher flow rate than that

of the BEP, the absolute circumferential velocity is negative inducing a swirling flow

rotating in the opposite direction of the runner (see Fig. 1.10(c) where Vt and U are

in opposite direction). In this case, the vortex rope takes a nearly axisymmetric shape,

sometimes called the “torch”. In both cases, cavitation may occur in the vortex core.

(a) part-load (b) full-load

Figure 1.11: Vortex rope formation in a draft tube at (a) part-load, and (b) full-load condition.
In the latter case, it is also called the “cavitation torch”. Source: Alligné [10].

The physical mechanism of vortex rope formation relies on “vortex breakdown”.

Vortex breakdown [15] can be defined as a sudden change of the flow structure. At a

critical swirl level, a steady quasi-cylindrical flow can nearly instantly transform to a
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highly unsteady, asymmetric, recirculating flow. Experimental visualizations of vortex

breakdown in pipes at low Reynolds numbers [16] show that the initial flow structure of

a vortex breakdown often resembles a bubble. In bubble-like vortex breakdown a free

stagnation point forms. The outer part of the flow is accelerated, while the inner part

of the flow starts to recirculate in the region just downstream of the stagnation point.

The bubble-like vortex breakdown is very unstable and its life is usually very short. The

bubble structure eventually transforms to a highly unsteady flow. Usually, as in the

case of the draft tube, the vortex breakdown changes to a helical vortex structure that

rotates around the axis of the draft tube cone, as well as spins around its own axis. This

phenomenon is what is known as the vortex rope.

1.3 Previous Studies on Vortex Rope in Draft Tubes

Experimental, numerical, and analytical investigations have been carried out for more

than fifty years to understand and to predict the vortex rope formation. In this section,

the state of the art is divided into two parts. The first one deals with the analytical

and experimental studies of the flow in the draft tube, and the second one recounts the

numerical investigations that aim to predict and simulate the vortex rope formation in

the draft tube.

1.3.1 Analytical and Experimental Studies

The first analytical and experimental investigations were focused on understanding the

development of swirling flow in circular tubes with constant diameter. Swirl number,

defined as the ratio between the circumferential and the axial momentums, has been

shown to have large effects on the flow field. Increasing the swirl level, a recirculating

region acting as a blockage is induced, called the vortex breakdown. Harvey [17] was the

first to visualize this phenomenon experimentally with an air swirling flow in a straight

pipe. Depending on different combinations of Reynolds number and swirl number, dif-

ferent types of vortex breakdown may appear as observed by Sarpkaya [16]. Cassidy

and Falvey [18] focused on the helical form of the vortex breakdown. They set up an

experimental apparatus to study its occurrence and to measure wall pressure fluctua-

tions related to the vortex core precession. Since then many experimental investigations

on the vortex breakdown phenomenon have been carried out [19, 20]. Moreover, many

theories and explanations of the vortex rope formation and vortex breakdown have been

developed by different researchers. Some of them, including Ref. [21], assume that this
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phenomenon is based on the concept of a critical state related to the wave phenomena,

analogous to the hydraulic jump in open-channel flow, whereas others [22] think that a

better analogy is between vortex breakdown and boundary layer separation. (It is shown

in this study that the vortex rope is associated with the shear layer at the interface of the

recirculating region near the centerline of the draft tube and swirling outer flow; more

details are given in Chapter 4.)

Later, the previous knowledge on the vortex breakdown has been applied to the draft

tube flow in Francis turbines [23]. The helical cavitating vortex rope in Francis turbines

is assumed to be a manifestation of the vortex breakdown phenomenon. Susan-Resiga

et al. [24] analytically demonstrated the unstable nature of the flow in the draft tube.

They have shown that the swirling flow at the outlet of the runner can be accurately de-

composed into a sum of three distinct vortices. Kuibin et al. [25] derived a mathematical

model that can recover averaged axial and circumferential velocity profiles, as well as

the vortex rope geometry, precessing frequency, and the level of pressure fluctuations at

the wall. They stated that this model would be useful in the early stages of the runner

design. Susan-Resiga et al. [26] introduced a mathematical model for computing the

axial and circumferential velocity profiles of the swirling flow exiting the runner within

the full operating range. Their model can be used for the early optimization stages of

the runner design.

In order to understand and analyze the flow pattern in the draft tube of Francis

turbines, many experimental investigations have been carried out. Nishi et al. [27, 28]

measured wall pressure fluctuations in an elbow draft tube for different flow regimes.

They focused on the regime where a stagnant region in the center of the draft tube was

surrounded by a rotating helical vortex rope. The influence of the cavitation number on

the amplitude of pressure pulsations and on the vortex precession frequency was pointed

out. The practical importance of the vortex rope in a Francis turbine and its poten-

tial harmful effects led to the FLINDT (FLow INvestigation in a Draft Tube) research

project [29]. The main objective of this project was to understand the physics of the

flow within the elbow draft tube of a Francis turbine. Accordingly, an extensive exper-

imental database was built up. In this framework, Arpe et al. [30] performed extensive

unsteady wall pressure measurements of the rotating vortex rope for different operating

points in thirteen cross sections of the draft tube. Advanced flow measurements such as

Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) were also used

for understanding the flow pattern in this project. Ciocan et al. [31] measured velocity

profiles at the draft tube inlet by LDA, and afterwards Iliescu et al. [32] extended the
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velocity field measurements to the whole draft tube cone using PIV. The synchronization

of the PIV measurements with vortex rope visualization allowed quantification of both

the periodic velocity components and the rope shape. A recent review of analytical and

experimental studies on vortex rope formation in draft tubes was performed by Nishi

and Liu [33].

1.3.2 Numerical Studies

In parallel to the experimental and analytical studies, a considerable number of numerical

investigations were attempted and results were compared to experimental data. The

progress of the numerical techniques in the prediction of the turbine characteristics for

the operating ranges in the vicinity of the best efficiency point (BEP) ensures a good

accuracy. One of the new challenges for the numerical simulation is to predict off-design

operating regimes where the vortex rope appears in the draft tube.

Several previous draft tube flow predictions have been carried out employing the

Reynolds-Averaged Navier-Stokes (RANS) equations with various turbulence closure

models. In the framework of the FLINDT project, Mauri [11] performed steady numeri-

cal simulations to obtain the averaged flow pattern under various conditions. Miyagawa

et al. [34] reported an unsteady simulation of flow in an elbow draft tube for a Fran-

cis pump-turbine. The purpose was to analyze the effect of the velocity profile at the

runner outlet on the flow instability in the draft tube. They observed the same vor-

tex behavior in numerical simulations and experiments by qualitative comparisons. Sick

et al. [35] performed a numerical simulation of a draft tube vortex in a medium spe-

cific speed pump-turbine. The computational domain included the runner and the draft

tube in order to capture the unsteady pressure field, caused by the draft tube vortex,

on the runner. The flow field was simulated by solving the RANS equations with the

Reynolds Stress Model (RSM) as the turbulence closure model. The comparison with

experimental data showed an overestimation of the vortex frequency but good agreement

for the pressure fluctuation amplitude. Unsteady RANS simulations and experimental

measurements were carried out and compared by Ciocan et al. [36]. They utilized a

two-equation standard k-ε turbulence model in ANSYS-CFX 5.6 and a relatively coarse

mesh for computations. Vortex global quantities, i.e., pressure fluctuation amplitude and

vortex frequencies were predicted with 3% and 13% error respectively while the mean

axial velocity was underestimated near the centerline. Zhang et al. [37] investigated the

physical characteristics and control strategy of the unsteady vortical flow in a Francis

turbine draft tube, based on the URANS simulation of the “sole draft tube flow” under
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part-load conditions. The computation was conducted using the commercial CFD code

FLUENT 6.1.22 and the renormalization group (RNG) k-ε turbulence model with loga-

rithmic wall functions. No comparison with experimental data, however, was reported.

Steady and unsteady computations of flow in an elbow draft tube were performed by Vu

et al. [38] in order to predict draft tube losses over the complete range of turbine opera-

tion. The two-equation k-ε turbulence model was used in two flow solvers, ANSYS-CFX

12.1 and OpenFOAM-1.5dev. They stated that the choice of turbulent inlet boundary

conditions is important even close to the best efficiency operating point. It was also

observed that as the operating conditions move away from the best efficiency point, the

performance of the k-ε turbulence model tends to deteriorate, particularly for part-load

operating conditions.

Relatively less work has been done on studying the performance of turbulence models

for hydraulic machinery applications. Turbulence modeling studies can be categorized in

two areas. The first area is the evaluation of different RANS turbulence closure models

in predicting time-averaged turbulent flow. One such work has been done by Yaras and

Grosvenor [39] who tested several turbulence models to establish the prediction accuracy

with respect to strongly swirling confined flow. They concluded that predictions were

rather poor with all models (the two-layer k-ε model of Rodi, the two-equation shear

stress transport (SST) model of Menter, and the one-equation eddy-viscosity model of

Spalart and Allmaras) significantly overestimating radial diffusive transport. Among

these models, the SST model yielded the worst predictions. Ware [40] investigated three

turbulence models for draft tube simulations, and concluded that the RNG k-ε model

has significant problems properly predicting the flow, while k-ε and RSM models give

quite comparable results which are in acceptable agreement with experimental data.

The second area of turbulence modeling studies are those related to the investigation

of more complex turbulence models including large eddy simulation (LES) and hybrid

RANS/LES models in draft tube simulations. The main objective in this area is to study

the models’ capability of predicting detailed unsteady, turbulent features of the flow. The

first attempt to numerically simulate the unsteady flow in a draft tube using LES was

done by Skotak [41]. In spite of a quite coarse grid, a vortex rope was simulated that

agrees qualitatively with the rotating rope observed in experiment. Ruprecht et al. [42]

developed an extended k-ε model based on the very large eddy simulation (VLES) ap-

proach and applied it to the unsteady simulation of flow in a draft tube. They showed

that unsteady features of the flow (e.g., pressure amplitudes and vortex rope size) are

better predicted with this model compared to using the standard k-ε model in which the
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flow becomes stationary due to too much damping. The frequency of pressure fluctua-

tions is well predicted in their simulations but amplitudes are underestimated. Various

hybrid RANS/LES models have been used for unsteady swirling flow and draft tube

simulations including the detached eddy simulation (DES) [43], the filtered SST k-ω

model [44], and the scale-adaptive simulation (SAS) [45, 46]. Most of these models have

shown relative improvement over the URANS models. However, detailed evaluation and

investigation of these models for various operating conditions of the hydroturbine are

seldom addressed.

1.4 Present Study

1.4.1 Scientific Motivation

The flow in the draft tube of a hydroturbine operating at off-design conditions is a com-

plex hydrodynamic phenomenon (see Fig. 1.12). It is characterized by highly unsteady

large scale vortices, regions with high shear and intense turbulence production, and re-

circulation regions. The complexity follows from the swirling flow entering the draft

tube, the wake of the crown cone, the draft tube flow streamline curvature, change in

cross-sectional shape, and adverse pressure gradients. Each of these characteristics is

known to be difficult to predict with numerical computations. A clear comparison with

detailed measurements, which would allow an estimation of the influence of modeling pa-

rameters, is necessary. Various forms of unsteadiness characterize the flow of hydraulic

turbines. In the draft tube, particularly for part-load operating conditions, strong flow

fluctuations are observed. The application of the traditional, two-equation turbulence

models for the simulation of unsteady flows is questionable, and the limitations are still

not well defined. The conventional closure models have been derived for and calibrated

by reference to simple, steady flows near walls and then used in unsteady free shear

layer flows. Therefore, the likelihood of traditional closure models being an adequate

framework decreases with increasing the complexity of the flow and the frequency of the

coherent structures. Therefore, applications of more complex models, such as hybrid

RANS/LES models, as well as improving the currently used models, are challenges that

need to be addressed.

1.4.2 Industrial Motivation

As discussed in Sec. 1.1, hydropower is the largest source of renewable electricity genera-

tion. High peak operating efficiencies (above 95%), storage capability, and fast response
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Figure 1.12: Flow in the draft tube of a model Francis turbine showing the development of a
cavitating unsteady vortex rope. Source: Brennen [47].

make hydropower an ideal form of power generation. However, the variable energy de-

mand and load following require hydroturbines to be operated over an extended range

of conditions, quite far from their design point (the BEP).

One of the main components of a hydroturbine where unwanted flow phenomena

appear under off-design conditions is the draft tube. As shown in Fig. 1.13, the draft

tube displays an abrupt increase in hydraulic losses as the operating regime departs

from the BEP, while other components (e.g., stay vanes, guide vanes, and runner) have

rather modest variations with the operating regime [48]. Therefore, it is admitted that

for modern Francis turbines the shape of the performance chart (hill chart) is dictated

by the losses in the draft tube [26]. It must be recognized that efficiency improvements

of only a few tenths of a percent generate substantially increased profits and save water

which is limited nowadays.

Additionally, most of the hydropower plants were designed several decades ago. This

gives rise to the potential for changing their design in order to improve the efficiency

and associated power output as well as greater operating stability. Usually the runner

and guide vanes are the focus of the refurbishment process and the spiral casing and

the draft tube are seldom redesigned due to constructional costs. However, undesirable
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Figure 1.13: Head losses of individual components of a hydropower plant normalized by the
runner head loss at the best efficiency point. Data source: Vu et al. [48].

flow behavior occurs when the runner and the draft tube are not matched. This can

result in flow instability and can reduce the optimal operating range of the machine1.

Understanding of the physics of the flow in the draft tube allows engineers to avoid

undesirable phenomena such as pressure fluctuations, flow blockage (draft tube surge),

and other dangerous instabilities when redesigning the runner. The knowledge gained

can be applied to improve the output of existing hydropower plants, adding significantly

to the power generation capacity.

Finally, in addition to the direct environmental benefits of renewable energy, draft

tube studies have indirect benefits: a better understanding of the flow characteristics

within the draft tube allows better control of the mixing process in this component, e.g.,

for the air admission purposes, which is of prime importance for the local river life.

1One such problem, described by Falvey [49], was associated with the Fremont Canyon Power Plant
in Wyoming. Vibrations and noise due to the draft tube vortex were so severe that operation was
prohibited. Eventually, it was found that the exit area of the runner was too small. The trailing edge of
each runner blade was trimmed to increase the exit area, which considerably reduced the severity of the
vibration and noise.
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1.4.3 Dissertation Focus Areas and Objectives

Given the adverse effects (severe pressure fluctuations, structural vibrations, flow insta-

bilities, and efficiency drop) that vortex rope can have on the operation of a hydropower

plant, analysis and investigation of the vortex rope formation as well as control or elim-

ination of its effects are necessary for improving hydroelectric plant efficiency over a

wide range of operating conditions, and preventing structural vibrations. Furthermore,

detailed features of the vortex rope formation are shown to be difficult to predict with

numerical computations. These computations are still widely based on the traditional

RANS turbulence models due to ease of use and lower computational expenses. The

limitations of such turbulence models, however, are not well known, particularly for the

prediction of complex, three-dimensional, time-dependent flows. On the other hand, the

use of more complex models, such as hybrid RANS/LES simulations, in hydroturbine

applications is not well documented.

The main objectives of the present study are, therefore, the high fidelity numerical

simulation, physical understanding, analysis, and mitigation of the vortex rope forma-

tion, with the emphasis being on the investigation of turbulence models in predicting

this complex flow. Therefore, attention is focused in particular on off-design operating

conditions of the hydroturbine where considerable flow instability, efficiency loss, and

structural vibrations due to the vortex rope formation have been reported. Complex

hydrodynamic phenomena associated with these losses and unsteady pressure fluctua-

tions are studied in detail. In particular, this work aims to understand the fundamental

processes governing the formation of the vortex rope, and to study and define the pre-

dictive capability of the models and to develop/modify turbulence models for better

prediction of vortex rope behavior. Additionally, a method for mitigation of the vortex

rope formation is numerically investigated and its effects on the draft tube performance

and pressure fluctuations are studied. Therefore, this study is of interest both from a

theoretical and an application perspective.



Chapter 2

General Computational Methodology

“Mechanics is the paradise of the mathematical sciences, because by means of it one

comes to the fruits of mathematics.” - Leonardo da Vinci

This chapter is devoted to a brief discussion of the numerical methodology in this

study. The governing equations representing the dynamics of the turbulent flow and

methods for numerically solving these equations are discussed first. Since one of the

primary objectives of this study is to investigate various turbulence models, a wide

range of models is then considered and discussed. Finally, computational techniques

including the discretization and the grid generation are presented. Further details of the

numerical setup for each test case are given in the associated chapter.

2.1 Governing Equations

Most of the flows in nature and in industry are turbulent. In these flows an irregular fluc-

tuation (mixing and vortical motion) is superimposed on the main stream. The fluctuat-

ing turbulent motions contribute significantly to the transport of mass and momentum,

and hence have a determining influence on the velocity field. The governing equations

of turbulent flows are the conservation laws of mass, momentum, and energy. In engi-

neering applications, many hydraulic flows can be considered incompressible. Also, the

flow in the present application can be considered isothermal, and the fluid is assumed to

be Newtonian. An incompressible and isothermal flow has constant viscosity. This flow

can be described by the velocity and pressure fields. The system of conservation laws

(mass and linear momentum) is known as the Navier-Stokes equations.
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2.1.1 The Navier-Stokes Equations

The formulation of the equations governing the fluid flow is ascribed to the French engi-

neer/physicist Claude-Louis Navier (1785-1836) and the English mathematician/physicist

George Gabriel Stokes (1819-1903). This section introduces the Navier-Stokes equations

and continuity.

For an incompressible flow where the density is constant following any fluid particle,

the continuity equation can be simplified to

∂ui
∂xi

= 0 (2.1)

The momentum equation is merely Newton’s second law formulated for a fluid par-

ticle. For an incompressible flow of a Newtonian fluid in a stationary frame of reference,

it can be written as

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρgi

(2.2)

The most important property of a Newtonian fluid is that the shear stress tensor

τij is a linear function of the strain rate tensor, i.e., τij = µ
(

∂ui
∂xj

+
∂uj

∂xi

)
= 2µSij. The

Newtonian assumption is valid for water and air at standard temperature as considered

in this study. The gravitational body force ρgi is usually integrated and included in the

pressure term.

The Navier-Stokes equations belong to the class of non-linear partial differential

equations. The solution to the equations is the local velocity vector ui(xi, t) and pres-

sure p(xi, t). However, it is not straightforward to find a solution to the Navier-Stokes

equations for turbulent flows. Turbulent fluid motion is highly random and consists of

many eddies with different length and time scales. Due to these complexities, turbulent

motions are extremely difficult to describe and to predict. The principal difficulty in

computing and modeling turbulent flows resides in the dominance of non-linear effects

and the continuous and wide spectrum of observed scales. In the direct numerical sim-

ulation (DNS) approach, no extra model is applied so that motions of all sizes have to

be resolved numerically by a grid which is sufficiently fine. Hence, the computational

requirements increase rapidly with Reynolds number. The storage capacity and speed

of present-day computers are still not sufficient to allow a DNS solution for a practically

relevant turbulent flow. Hence, for many applications DNS, which is of great value for
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theoretical investigations and model testing, is unaffordable. An alternative approach is

to average or filter the governing equations and to solve for the averaged/filtered velocity

and pressure fields. By averaging or filtering the Navier-Stokes equations, flow charac-

teristics of some of the length scales of the flow need not be computed (instead they are

modeled, depending on which type of modeling is used), and in general a much larger

(coarser) grid spacing can be used.

2.1.2 The Reynolds-Averaged Navier-Stokes Equations: The RANS

Approach

The RANS equations are based on the Reynolds decomposition, which reads

φi = φ̄i + φ′i (2.3)

where φ̄i is an ensemble-averaged quantity and φ′i is a fluctuation from the ensemble

average. The ensemble average can be expressed as

φ̄i = lim
N→∞

1

N

N∑

i=1

φi (2.4)

The ensemble average is a tool that separates stochastic turbulent fluctuations from

the resolved flow. The ensemble average of a stochastic fluctuation equals zero by defi-

nition, i.e., φ̄′i = 0, and hence, ¯̄φi = φ̄i.

The RANS equations can be derived by replacing the arbitrary quantity φi in the

Reynolds decomposition by velocity and pressure, and then implementing the decom-

posed variables in Eqs. (2.1) and (2.2), which yields

∂ūi
∂xi

= 0 (2.5)

ρ
∂ūi
∂t

+ ρūj
∂ūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− τRANS

ij

]
(2.6)

These equations are known as the Reynolds-averaged Navier-Stokes (RANS) equa-

tions and they can be solved for the averaged velocity and pressure fields. However, an

unknown term τRANS
ij results from averaging, and now appears in Eq. (2.6). This term,

known as the Reynolds stress tensor τRANS
ij = ρu′iu

′

j introduces six unknown quantities

which must be modeled in order to close the system of equations. This is called the
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“turbulence closure problem”.

2.1.3 The Filtered Navier-Stokes Equations: The LES Approach

Another way of averaging is to filter the equations. A filtering operation converts the

governing equations into a large eddy simulation (LES) form. A filtered quantity, in the

fluid domain D, can be written as [50]

φ̂i(x, t) =

∫

D
G(x− x

′,∆)φi(x
′, t) dx′ (2.7)

where ∆ is the filter width (related to the computational mesh size1) and G is a filter

function for which

∫

D
G(x− x

′,∆) dx′ = 1 (2.8)

The filter G determines the scale of the resolved eddies in the flow by filtering out

any eddies with scales smaller than the filter width. Figure 2.1 illustrates the effect and

importance of the filter width. If the filter is too large, some details of the actual flow

can be lost, while a proper filter size can capture important dynamics of the actual flow.

Furthermore, it should be noted that unlike a Reynolds-averaged quantity, for a filtered

quantity in general
ˆ̂
φi 6= φ̂i, as shown in Fig. 2.1. This is because the filtered value of the

fluctuating quantity is not zero anymore, and there is a correlation between the filtered

and fluctuating quantities [51].

The 3D box filter, provided implicitly in the finite-volume discretization, is commonly

used in computational fluid dynamics solvers [52, 53]. Using this filtering operation, a

filtered variable can be written as

φ̂i(x, t) =
1

δV

∫

δV
φi(x

′, t) dx′ (2.9)

where δV is the local cell volume of the computational grid. Therefore, the filter width

is determined by the computational grid size, and, hence, all eddies smaller than the

computational spacing are filtered out.

By applying this filter to each term of Eqs. (2.1) and (2.2), the filtered Navier-Stokes

equations are obtained, namely,

1Therefore, filtering is an operation in space.
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Figure 2.1: Filtered functions φ̂i and
ˆ̂
φi obtained from spatial filtering of φi(x) using (a) narrow

box filter and (b) wide box filter.

∂ûi
∂xi

= 0 (2.10)

ρ
∂ûi
∂t

+ ρûj
∂ûi
∂xj

= − ∂p̂

∂xi
+

∂

∂xj

[
µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)
− τSGS

ij

]
(2.11)

Here, the last term is called the subgrid scale stress tensor τSGS
ij which needs to be

modeled. This term appears as a result of filtering and can be expressed as

τSGS
ij = ρ (ûiuj − ûiûj) (2.12)

The different LES variants are based on the filtering techniques and the modeling of

the subgrid scale stress tensor.
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2.1.4 The Hybrid RANS/LES Approach

As shown in Secs. 2.1.2 and 2.1.3, the Reynolds-averaged and filtered Navier-Stokes

equations, Eqs. (2.6) and (2.11), are identical with the exception of the form of the

unknown stress tensor, τRANS
ij or τSGS

ij . The obvious similarity is further enhanced by

the usage of the eddy viscosity concept for most subgrid scale (SGS) models and that the

employed models are commonly derived from RANS counterparts. If any eddy viscosity

model is used to close any of the systems of equations, there is no mathematical difference

between the two and merely a conceptual difference remains. As a consequence, not only

do the governing equations exhibit a structural similarity, but so also do many of the

turbulence models.

A RANS model depends on physical quantities describing the entirety of the turbulent

fluctuations. For example in two-equation models, in general,

τRANS
ij = f

(
∂ūi
∂xj

, k, l, C

)
(2.13)

where C is a model constant, and k and l are the turbulent kinetic energy and length

scale respectively. On the other hand, LES based on the Smagorinsky model [54] uses a

relation like

τSGS
ij = f

(
∂ûi
∂xj

,∆, C

)
(2.14)

where ∆ is a length scale related to the numerical grid, e.g., ∆ = (∆x∆y∆z)
1/3. There-

fore, it can be concluded that a model qualifies as an LES model if it explicitly involves

the size of the computational grid; and RANS models, in contrast, depend only on

physical quantities, including geometric features like the wall distance.

In the LES approach, the large, energy carrying, dynamically important, and flow-

dependent eddies are solved directly, leaving only the smallest scales of turbulence with

very low energy and supposedly universal behavior (assumed isotropic) to be modeled.

The application of LES has been particularly successful in non-equilibrium flows in free

shear layers, and in massively separated flows in which the accurate simulation of regions

near the wall is not of primary importance [55]. However, one of the major obstacles

to the use of LES in complex industrial flows with high Reynolds numbers, such as the

flow in a draft tube, is the modeling of the near-wall region [56, 50]. The dynamics of

the flow near the wall are strongly anisotropic even at small scales and turbulence pro-
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duction in this region is associated with an upscale energy cascade (energy transfer from

smaller eddies near the wall, where turbulence production is maximum, to larger eddies

away from the wall) that is largely dominant over the commonly assumed downscale

energy cascade (energy transfer from larger to smaller eddies which eventually results in

dissipation of the turbulent kinetic energy), presenting elsewhere. Also, the large eddies

that must be captured on the computational grid to perform an accurate LES shrink in

size and are not isotropic as one approaches the wall, leading to excessive computational

costs [55]. In fact the small eddies are not isotropic near a wall either. Current LES mod-

eling approaches require that either the near-wall region be adequately resolved (using a

DNS-like grid near the wall which makes it inapplicable for industrial flows), or that an

LES wall-model (for example a two-layer model [57] or a dynamic wall model [58]) be

used, which to date has not provided accurate results in relatively complex flows [59, 60]

(See Ref. [50] for further details).

Contrary to LES, the weakness in the RANS simulations is that the resolved large

scale unsteady motions are often damped out by the turbulence model. The near-wall

modeling, on the other hand, is often quite accurate since all these models are developed

and calibrated for near-wall flows.

The hybrid RANS/LES methods aim at combining the best of RANS and LES tur-

bulence models. Full realization of the potential of the hybrid RANS/LES approach

requires that LES be used in regions of the flow to capture the physics the RANS model

cannot, and RANS be used everywhere else for computational efficiency. The transition

between LES and RANS solutions can be continuous or discontinuous in space, leading

to two main classes of hybrid RANS/LES methods, namely “global” and “zonal” hybrid

RANS/LES approaches [61].

The global hybrid methods rely on a single set of model equations, and a continuous

treatment of the flow variables at the RANS/LES interface. They switch automatically

from one method to another based on the physical and numerical (grid size) scales of

the problem. Most global hybrid RANS/LES models are a merging between a RANS-

type eddy viscosity model (see Sec. 2.2.1 for more details) and an LES-type subgrid

viscosity model. Since these turbulent viscosities have different built-in characteristic

scales, switching from one definition to another or interpolating between the two values

is equivalent to switching from one effective filter to another. The switching between

the built-in scales of the model for the unresolved scales are performed locally in space.

The global hybrid RANS/LES methods can, therefore, be interpreted as multiresolution

methods, in which the resolution in terms of wave number is increased in regions with
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low eddy viscosity levels and decreased in regions with high viscosity levels. For example,

the decrease of the eddy viscosity in the separated regions far away from the wall allows

eddies to develop rapidly. The switch from RANS to LES mode in the global hybrid

methods does not imply an instantaneous change in the resolution level. Therefore,

these methods introduce a “grey area” in which the solution is neither “pure RANS” nor

“pure LES”. Accordingly, global hybrid RANS/LES models are also known as “weak

RANS/LES coupling” methods since there is no mechanism to transfer the modeled

turbulence energy into resolved turbulence energy. This may be problematic in situations

where upstream turbulence plays a significant role, as well as in cases with transition

and separation not triggered by the geometry.

The zonal hybrid methods are based on a discontinuous treatment of the RANS/LES

interface. In this approach, two regions of “pure RANS” and “pure LES” are predefined

in the flow in which classical RANS and LES models are utilized respectively. Therefore,

the problem of the gray area may be alleviated. The difficulty, however, is that informa-

tion must be exchanged at the RANS/LES domain interface. Thus, these methods are

known as “strong RANS/LES coupling” methods. The coupling between RANS and LES

solutions is challenging since RANS solution does not provide any turbulent fluctuations

that can be used to feed to the LES solution. In many cases, additional modeling which

includes further assumptions on local length scales, time scales, and energy distribution

are required. The RANS/LES interface can be in various forms as shown in Fig. 2.2. In

the wall-modeled LES (WMLES) [62], the inner part of the boundary layer is treated

using a RANS model and the rest of the flow is solved using LES (see Fig. 2.2(a)).

Another common configuration for the RANS/LES interface is when an LES region is

located downstream of a RANS region (see Fig. 2.2(b)). Usually in this case, synthetic

turbulent structures have to be generated to match statistical characteristics provided

by the RANS solution [63]. Finally, the most general problem concerns the case where

a local LES simulation is embedded into a global RANS simulation [57] as shown in

Fig. 2.2(c).

2.2 Turbulence Closure Models

Any averaging or filtering procedure of non-linear equations gives rise to additional

unknowns whose influence on the mean flow has to be approximated. As shown in the

previous section, for the case of the Navier-Stokes equations, the additional unknowns

turn out to be correlations of fluctuating velocities. The unknowns originate from the
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Figure 2.2: Some of the configurations of the zonal RANS/LES coupling: (a) wall-modeled LES
(WMLES), (b) LES region downstream of the RANS region, and (c) embedded LES.

non-linear advection terms and must accordingly be regarded as turbulent momentum

flux. However, they are usually referred to as the Reynolds stresses/subgrid scale stresses

because they are parts of a second-order tensor. Providing proper models for these

additional unknowns is called “turbulence closure” or “turbulence modeling”. The larger

the fraction of modeled scales of the flow, the lesser is the requirement on the grid

resolution. The required grid therefore depends on the choice of turbulence model. Most

often it is the other way around, i.e., that the resolution or computational time is the

limiting factor and determines which approach to turbulence modeling is most suitable

for a specific case. There is thus a wide spectrum of complexity of turbulence models.

It should be noted, however, that because a turbulence model is merely a “model”,

it has a limited range of applicability and will always cause modeling errors of some

magnitude. This section is devoted to briefly introduce turbulence models that are used

in this research study. Further details on these models can be found in [64, 65, 66].
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2.2.1 The RANS Models

The basic class of turbulence models, eddy viscosity models (EVM), is based on the

assumption that the Reynolds stress tensor can be expressed in terms of the mean rate

of strain in the same way as the viscous stress for a Newtonian isotropic fluid, except

that the coefficient of molecular viscosity is replaced by the eddy viscosity. According

to the first EVM proposed by Boussinesq, the Reynolds stresses are proportional to the

mean velocity gradients as [67]

−
τRANS
ij

ρ
= −u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij (2.15)

where νt is the turbulent eddy viscosity, k is the turbulent kinetic energy, and δij is the

Kronecker delta. The eddy viscosity is not a fluid property as is the molecular viscosity,

but a flow property that depends strongly on the state of turbulence.

This approach is computationally very convenient since the same algorithm and com-

putational code can be used for both laminar and turbulent transport phenomena with-

out having to make many modifications. The problem of closure remains, however, except

that now it is reduced to defining the eddy viscosity coefficient νt. Different turbulence

models are developed in order to model this coefficient

2.2.1.1 The k-ε Model

The k-ε model is one of the most prominent turbulence models. It has been implemented

in most general purpose CFD codes and it is now considered as an industrial standard

model. For general purpose simulations, the k-ε model offers a good compromise in

terms of simulation time, accuracy, and robustness. Transport equations for turbulent

kinetic energy k and its dissipation rate ε are solved in this model, and the eddy viscosity

is specified as [64]

νt = Cµ
k2

ε
(2.16)

The model uses the following transport equations for turbulent kinetic energy and

turbulence dissipation rate [64]

∂k

∂t
+ ūj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ P − ε (2.17)
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∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ C1ε

Pε

k
− C2ε

ε2

k
(2.18)

where P is the turbulent kinetic energy production term which is

P = −u′iu′j
∂ūi
∂xj

= νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(2.19)

The five constants in this model are [64]

σk = 1.0 , σε = 1.3

C1ε = 1.44 , C2ε = 1.92 , Cµ = 0.09

2.2.1.2 The Realizable k-ε Model

The realizable k-ε model is similar to the standard k-ε model except that it places special

constraints on the Reynolds stresses such that it would be consistent with the physics of

the turbulent flow, such as positivity of normal stresses (u′iu
′

i > 0) and Schwarz inequality

for shear stresses (u′iu
′

j

2 ≤ u′i
2u′j

2) [68]. This model is a physically realizable model, i.e.,

it does not let the normal Reynolds stresses become negative. Turbulent viscosity is

modeled similarly to the standard k-ε model (Eq. (2.16)), however Cµ is not constant as

in standard k-ε but is a function of strain rate and rotation rate tensors [68].

2.2.1.3 The k-ω Model

The k-ω model is also a two-equation turbulence model. It is based on transport equa-

tions for the turbulent kinetic energy k and for the specific dissipation rate ω (rate of

dissipation per unit of turbulence kinetic energy, often called turbulent frequency2). In

the original k-ω model [69] the eddy viscosity is expressed by

νt =
k

ω
(2.20)

Transport equations for k and ω are as follows [69]

∂k

∂t
+ ūj

∂k

∂xj
=

∂

∂xj

[
(ν + σ∗νt)

∂k

∂xj

]
+ P − β∗kω (2.21)

2ω = ε/(Cµk)
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∂ω

∂t
+ ūj

∂ω

∂xj
=

∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
+ α

Pω

k
− βω2 (2.22)

where [69]

σ =
1

2
, σ∗ =

1

2

α =
5

9
, β =

3

40
, β∗ =

9

100

Various other versions of the k-ω model are proposed later with several modifications

including extra terms and coefficients [64, 65].

2.2.1.4 The Shear Stress Transport (SST) k-ω Model

The shear stress transport model is a blending between the k-ω model near the surface

and the k-ε model in the outer region, which is developed by Menter [70]. The combina-

tion of the two models has been accomplished using a blending function. By multiplying

the k-ω model equations by function F1 and the transformed k-ε model equations by

1− F1, the SST k-ω model equations can be written as follows

∂k

∂t
+ ūj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk3

)
∂k

∂xj

]
+ P − β∗kω (2.23)

∂ω

∂t
+ ūj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω3

)
∂ω

∂xj

]
+ α3

Pω

k
− β3ω

2 + (1− F1)
2

ωσω2

∂k

∂xj

∂ω

∂xj
(2.24)

All closure coefficients in these equations are expressed in terms of the blending

function

CSST = F1Ck−ω + (1− F1)Ck−ε (2.25)

The proper transport behavior can be obtained by a limiter added to the formulation

of eddy viscosity [70]

νt =
k

max (ω,F2S)
(2.26)

F2 is a blending function which restricts the limiter to the wall boundary layer, as

the underlying assumptions are not valid for free shear flows. S is the magnitude of the
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strain rate. Both F1 and F2 are represented by tangent hyperbolic functions of several

flow variables including k, ω, and their spatial derivatives (see Ref. [70, 65] for details of

the formulation).

2.2.1.5 Near-Wall Treatment in RANS Models

In general, the areas of the flow domain where high gradients occur are of high interest.

In the case of a turbulent wall-bounded flow, the solution variables have large gradients

near the wall, and the momentum and other scalar transport occur most vigorously.

Therefore, accurate modeling of the near-wall region determines successful predictions

of the flow.

The k-ε models, the Reynolds stress model (RSM), and the large eddy simulation

(LES) model (so called high-Reynolds number models) are primarily valid for the turbu-

lent core flow, i.e., the region far away from any wall. In comparison, the k-ω models are

designed to be applicable throughout the boundary layer (low-Reynolds number models).

Therefore, in the case of high-Reynolds number models, consideration needs to be given

as to how to make them suitable in the near-wall region.

There are two approaches commonly used in modeling the near-wall region. First,

the near-wall region (viscous sublayer and buffer layer) is modeled using semi-empirical

formulas called “wall functions” [71], instead of actually solving the flow using compu-

tational grids. By using wall functions it is assumed that the flow is “well-behaved”

near the wall and follows a generic and predictable behavior. Another method is so

called “near-wall modeling” which focuses on the modification of turbulence models to

make them enable to resolve the near-wall region all the way to the wall. Generally,

several damping functions are used to decrease the level of turbulence in the viscosity-

affected near-wall region. This results in “low-Reynolds number” versions of the above-

mentioned models, for example low-Reynolds number k-ε models [72]. The two-layer

zonal model [73] is another near-wall modeling method. In this model, the flow field is

completely calculated all the way to the viscous sublayer (similar to the low-Reynolds

number models). In the viscosity-affected near-wall region (the “layer” close to the wall)

the momentum and turbulent kinetic energy transport equations are solved, however,

the turbulent viscosity νt is obtained by an algebraic equation [73]. The demarcation of

the two layers is determined by the turbulent Reynolds number Rey = y
√
k/ν, where y

is the wall-normal distance and k is the turbulent kinetic energy. The viscosity-affected

inner layer is defined as the region where Rey < 200 [73].

It should be noted that there is a close relationship between the near-wall treatment
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approach and the computational grid requirements as different methods exhibit very dif-

ferent requirements on the wall normal distance of the first grid point, and any violation

of these leads to a drastic degeneration in the solution quality3. This places a very high

level of importance on the design of the numerical grid.

2.2.2 The Unsteady RANS Models

It has become common to name Reynolds averaged Navier-Stokes modeling as URANS

(Unsteady RANS) whenever the solution is time-dependent (including changes of quan-

tities with time). The approach is then to apply an existing RANS model with time

derivatives with the purpose of resolving some of the unsteady features of the flow with-

out recalibration of model coefficients. In the URANS approach the Reynolds decompo-

sition, discussed in Sec. 2.1.2, is considered to be time-averaging over a time interval T .

This averaging time T has to be larger than the characteristic time scale of turbulence τ

and smaller than the characteristic time θ for the time evolution of the mean properties.

In fact, in URANS modeling, the non-turbulent unsteadiness is resolved in the mean flow

while all the turbulent fluctuations are still modeled by the RANS model. Therefore,

the URANS approach can be successfully used in cases where the flow is forced to be

unsteady by an external force (e.g., an unsteady boundary condition). The inherent

assumption is that the flow field can be characterized by a separation of time scale be-

tween the unsteadiness of the mean field and turbulence. This will be discussed further

in Sec. 4.4.

2.2.3 The Hybrid RANS/LES Models

As discussed in Sec. 2.1.4, the hybrid RANS/LES models have been developed as a

coupling between LES and RANS to reduce computational cost for making LES afford-

able in a wider range of complex industrial applications. The development of hybrid

models has received increasing attention among turbulence modeling experts, CFD code

developers, and industrial CFD engineers. Hybrid RANS/LES has become one of the

main modeling frameworks for quantitatively accurate predictions of complex unsteady

flows at high Reynolds numbers. A wide variety of hybrid RANS/LES models, e.g.,

detached eddy simulation (DES) [75], very large eddy simulation (VLES) [50], extra-

large eddy simulation (XLES) [76], partially-integrated transport model (PITM) [77],

partially-averaged Navier-Stokes (PANS) [78], and scale-adaptive simulation (SAS) [79],

3For example, an underprediction of the skin friction coefficient of up to a factor of five has been
reported for airfoil flows when inappropriate wall treatment is applied [74].
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have been developed and used in simulations of several industrial and academic flow test

cases (see Ref. [56, 61] for a comprehensive review). In the present study two hybrid

RANS/LES models, namely DES and PANS are used. The rest of this section is devoted

to the DES model. The PANS model will be discussed in detail in Chapter 5.

2.2.3.1 The Detached Eddy Simulation (DES) Model

The most common type of hybrid RANS/LES models is detached eddy simulation (DES).

The approach was given the name detached eddy simulation since it is meant to resolve

the “detached” large eddies far from any boundary in an LES-like manner whereas small

structures “attached” to the wall would be modeled in a RANS mode. As defined by

Travin et al. [80] “a Detached-Eddy Simulation is a three-dimensional unsteady numer-

ical solution using a single turbulence model, which functions as a sub-grid-scale model

in regions where the grid density is fine enough for a large-eddy simulation, and as a

Reynolds-averaged model in regions where it is not.” Based on this definition, the imple-

mentation of the DES is quite simple. It is based on using the same background RANS

model with different length scales (RANS and subgrid ones respectively) depending on

the local grid resolution. Exactly this simplicity combined with impressive results ob-

tained in the first uses of DES for complex aerodynamic applications [81] and positive

experience have motivated further development. The DES proposed by Spalart et al. [82]

is historically the first approach of such a type. They combined the Spalart-Allmaras

RANS model with its subgrid scale counterpart by means of a limiter defined as [82]

lDES = min (dw, CDES∆) (2.27)

where lDES is the model length scale, dw is the distance to the wall involved in the

destructive term of the Spalart-Allmaras model, CDES is the only additional empirical

model constant, and ∆ is defined as the largest local grid-spacing

∆ = max (∆x,∆y,∆z) (2.28)

Substitution of the length scale (Eq. (2.27)) in place of the distance to the wall in

the eddy-viscosity transport equation of the Spalart-Allmaras model directly results in

the DES model of Spalart et al. [82], which performs as the background RANS model

in the attached boundary layer near the wall (dw < CDES∆) and as an SGS model with

implicit filter CDES∆ in the flow regions away from the wall (dw > CDES∆).
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A more general definition of the DES limiter (Eq. (2.27)), compatible with any RANS

model, given by Travin et al. [80] reads as

lDES = min (lRANS , lLES) (2.29)

where lRANS is the RANS length scale explicitly or implicitly involved in any RANS

model. For example, for the k-ε model this length scale is defined as lRANS = k3/2/ε,

and for the k-ω model lRANS = k1/2/(Cµω). The lLES = CDES∆ is the LES length scale.

Based on this definition a wide range of DES versions based on RANS models ranging

from one- and two-equation linear eddy viscosity models [83] to algebraic Reynolds stress

models [84] have been developed. Many of these models are summarized in [66, 84]. As

of today, no strong evidence of noticeable DES model-sensitivity for the wall bounded

flows are known [66]. This is naturally considered as an essential advantage of DES.

Nonetheless, its versions based on different RANS models are still of interest. One

reason for this is that some of these versions still may provide higher accuracy, especially

when accurate prediction of the separation point (where flow becomes detached) is of

crucial importance. Furthermore, some researchers prefer to use the DES versions based

exactly on those models which are used in the RANS context. In the present study, the

three following versions of the DES model are used.

• The Spalart-Allmaras Based DES Model

The formulation for this version which is based on the original DES of Spalart et al. [82]

is given by Eq. (2.27). The empirical constant CDES has the value of 0.65.

• The Realizable k-ε Based DES Model

This DES model is similar to the realizable k-ε model discussed in Sec. 2.2.1.2 , with the

exception of the dissipation term in the k equation (Eq. (2.17)). In the DES model, the

realizable k-ε RANS dissipation term (originally ε) is modified such that [85]

εDES =
k3/2

lDES
(2.30)

where lDES is given by Eq. (2.29) with lRANS = k3/2/ε and lLES = CDES∆. In this

version CDES has a value of 0.61 and ∆ is defined by Eq. (2.28). It can be seen that for

the case of lDES = lRANS , the original dissipation term ε is retrieved.
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• The SST k-ω Based DES Model

The dissipation term of the turbulent kinetic energy in the SST k-ω model (originally

ε = β∗kω in Eq. (2.23)) is modified for the DES turbulence model as described in [83]

to become

εDES = β∗kωFDES (2.31)

where FDES is expressed as

FDES = max

(
lRANS

CDES∆
, 1

)
(2.32)

here, CDES is equal to 0.61 and ∆ is defined in Eq. (2.28). The turbulent length

scale is defined by the RANS simulation

lRANS =
k1/2

β∗ω
(2.33)

2.2.3.2 The Delayed Detached Eddy Simulation (DDES) Model

The DES formulation in Eqs. (2.29) and (2.28) is based on the assumption that the

wall-parallel grid spacing near the wall exceeds the boundary layer thickness. Only then

will the interface where

lRANS = lLES = CDES∆

be located outside of the boundary layer as required. In the case of an ambiguous grid

definition, however, the DES limiter may activate the LES mode inside the boundary

layer, where the grid is not fine enough to sustain resolved turbulence. In this case, DES

exhibits an incorrect behavior inside the boundary layer including underprediction of the

skin friction coefficient4 and even premature separation5 [66].

Therefore, a modification of the DES formulation attempting to avoid nonphysical

behavior in attached boundary layers was proposed by Spalart et al. [86]. In this for-

mulation, which aims to preserve the RANS mode throughout the boundary layer, the

model length scale is modified to be [86]

lDDES = lRANS − fdmax (0, lRANS − CDES∆) (2.34)

4Known as modeled stress depletion (MSD).
5Known as grid induced separation (GIS).
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with

fd = 1− tanh
[
(8rd)

3
]

(2.35)

rd =
2 (νt + ν)

κ2d2wS
(2.36)

where κ is the von kármán constant, dw is the distance to the nearest wall, and S is the

strain rate magnitude.

The hyperbolic tangent blending function fd is tuned such that the earliest onset of

LES mode occurs just outside the boundary layer [86]. fd=0 inside a turbulent boundary

layer, blending smoothly to fd=1 outside of the boundary layer. Intended to prevent DES

from a too early switch to LES mode, the modified version is called delayed detached

eddy simulation (DDES).

2.3 Discretization and Numerical Solution

Computational fluid dynamics (CFD) is an important tool for studying fluid flows of

various kinds. The relative low cost and availability of detailed data sets make CFD of

special interest. CFD solvers usually use a finite-volume-based technique to convert a

general scalar transport equation to an algebraic equation that can be solved numerically.

In the finite-volume method the computational domain is divided into a large number of

control volumes. The general transport equation of a scalar quantity φ can be written

as

∂φ

∂t
= ∇. (Vφ) = ∇. (Γ∇φ) + Sφ (2.37)

with V being the velocity vector, Γ the coefficient of diffusivity, and Sφ a source term.

Integrating this equation over each control volume (CV) and time interval ∆t, and using

the Gauss divergence theorem, we may write

∫ t+∆t

t



∫

CV

∂φ

∂t
dV +

∫

CS

φV.ndA


 dt =

∫ t+∆t

t



∫

CV

Γ∇φ.ndA+

∫

CV

SφdV


 dt (2.38)
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where n is an outward pointing, normal vector of the boundary of the control volume

(control surface CS). The first term on the left-hand side represents the rate of change

of the fluid property φ in the control volume and the second term represents the net

transport rate of property φ out of the volume due to advection. The first term on the

right-hand side is the net rate of transport of property φ into the control volume due to

diffusion and the last term on the right-hand side is the net rate of increase of φ due to

sources inside the control volume.

In order to solve Eq. (2.38) numerically, the various terms need to be discretized.

Discretization transforms the underlying partial differential equations into a set of al-

gebraic equations that can be solved computationally. Depending on the physics of the

term being discretized, the discretization can be performed in different ways, resulting

in different “discretization schemes”. These schemes are actually the ways to interpolate

the information that is transported between the cells, and the order of each discretiza-

tion scheme is a measure of its numerical efficiency and accuracy. The diffusion term in

Eq. (2.38) is discretized using the second-order central-differencing scheme [87].

For the discretization of the advection term, however, various schemes are used de-

pending on the transport equation being solved. In the RANS simulations, the advection

term in transport equations of momentum and turbulence quantities (e.g., k and ε) is

discretized using the second-order upwind scheme. The pure central-differencing scheme

is the ideal choice for LES and hybrid RANS/LES simulations due to the low level of

numerical diffusion. It, however, results in numerical instabilities and some nonphysical

oscillations added to the solution [88]. Therefore, hybrid RANS/LES simulations are

performed using a bounded central-differencing scheme [89] for the momentum equation,

while a second-order upwind scheme is used for turbulence quantities. The bounded

central-differencing scheme, which blends the central differencing and second-order up-

wind schemes as well as forces the convection boundedness criterion [90], is shown to be

competitive in terms of minimizing the numerical errors [91, 92].

For unsteady simulations, the governing equations must be discretized not only in

space but also in time. Temporal discretization involves the integration of every term in

the differential equations over a time step ∆t (see Eq. (2.38)). In this study, a second-

order implicit differencing scheme is used, whereby values of a scalar φ at each new time

step t + 1 are determined from the values at the previous two time steps t and t − 1

according to
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∂φ

∂t

∣∣∣∣
t+1

=
1

2∆t

(
3φt+1 − 4φt + φt−1

)
(2.39)

This implicit equation should be solved iteratively at each time step. It is uncondi-

tionally stable independent of the time step size. The attention should be paid, however,

to adjust the time step ∆t such that a satisfactory temporal resolution of transient flow

phenomena is achieved.

As there is no explicit pressure equation included in the calculations, special treat-

ments are needed to couple the pressure and the velocity fields. The common approach,

also used in this study, is so called the “segregated” solution where equations are solved

sequentially rather than simultaneously. The procedure in this study is based on the SIM-

PLE algorithm which obtains the pressure field by solving a pressure correction equation

iteratively. The pressure correction equation is derived based on the combination of the

continuity and momentum equations. Therefore, it ensures that mass and momentum

are conserved within the computational domain. When applied to unsteady flow prob-

lems, the SIMPLE algorithm enables the simulation to advance at large time steps,

however, several sub-iterations are required within each time step to obtain a converged

solution. The details of formulations for the pressure-velocity coupling algorithms, such

as SIMPLE, SIMPLEC, and PISO are well covered in Ref. [88].

2.4 Flow Solvers

Numerical simulations in the present study are performed using two CFD codes, namely

ANSYS-FLUENT [52] and OpenFOAM [53].

2.4.1 ANSYS-FLUENT CFD Code

ANSYS-FLUENT, a commercial CFD solver, provides comprehensive modeling capabil-

ities for a wide range of compressible and incompressible, laminar and turbulent fluid

flow problems. Steady or transient analyses can be performed with this code. ANSYS-

FLUENT contains the broad physical modeling capabilities needed to model flow, tur-

bulence, heat transfer, and reactions for industrial applications [52]. Several turbulence

models are implemented in ANSYS-FLUENT making it a proper choice for the present

simulations.

Two numerical approaches are available in ANSYS-FLUENT: density-based solver

and pressure-based solver. In both methods the velocity field is obtained from the
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momentum transport equation. In the density-based approach, the continuity equation

is used to obtain the density field while the pressure field is determined from the equation

of state [85]. On the other hand, in the pressure-based approach, the pressure field is

extracted by solving a pressure or pressure correction equation which is obtained by

manipulating the continuity and momentum equations as discussed in Sec. 2.3. Based on

the physics of the current problem the pressure-based solver is used. Since the governing

equations are nonlinear and coupled, the solution process involves iterations wherein the

entire set of governing equations is solved repeatedly until the solution converges, i.e.,

the solution residuals become smaller than a predefined threshold.

The source code is not available for ANSYS-FLUENT; therefore, any customization

in boundary conditions, fluid properties, turbulence models, solvers, etc. should be

performed via user-defined functions (UDF) [93]. A UDF is a routine (programmed by

the user) written in C programming language which can be dynamically linked with the

solver and addresses a wide range of applications. However, it is not possible to address

every application using UDFs. Not all solution variables and models can be accessed by

UDFs. This makes the flexibility to changes of ANSYS-FLUENT limited, particularly

for new model development.

2.4.2 OpenFOAM CFD Code

OpenFOAM (Open Field Operation And Manipulation) is an open source, free CFD

code that has the advantage of being open for changes and development. The users can

contribute with new ideas and help with extending the software features. OpenFOAM

consists of C++ libraries, which foremost are used to create applications. These applica-

tions consist of solvers and utilities. The solvers are used for solving continuum mechanics

problems, and the utilities are mostly used to manipulate data in various forms. The

main advantage of OpenFOAM is the ease of creating/customizing solvers and utilities.

To be able to make this happen, the programming language needs to have properties

such as inheritance, template classes, virtual functions, and operator overloading which

are available in C++ programming language.

The solvers and utilities are controlled through the use of dictionaries. These are

files where specifications of the applications are accessed and controlled. Specifications

such as discretization schemes, simulation time steps, divergence schemes, turbulence

models, pressure corrector settings, and linear solver settings are all controlled and ac-

cessed through these sets of dictionaries. OpenFOAM uses a common structure to set

up a problem. An overview of the three subdirectories which are necessary to create
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a case in OpenFOAM is given in Fig. 2.3. When the solver is running, it initiates the

computations with the values given in a directory named 0, as in time 0. Then it prints

the quantity fields in time directories, with a time interval specified in a dictionary called

controlDict located in subdirectory system. Two other files in the system subdirectory

are fvSolution and fvSchemes which include information on solver settings (tolerances,

under-relaxation factors, etc.) and numerical schemes, respectively. Information about

computational grid, turbulence model, and material properties are given in subdirec-

tory constant. When the simulations are done, results can be post-processed through

software such as Paraview, Gnuplot, or Tecplot.

Figure 2.3: Overview of the content of a case in OpenFOAM.

OpenFOAM has a prospect to be widely used in CFD simulations of various fluid flow

problems since it is free and open-source. In fact, particular attention is paid recently to

the application of OpenFOAM in hydroturbine flow simulations [94, 95]. Nevertheless,

its learning curve is quite steep, and a comprehensive, detailed user’s manual is still

unavailable. Therefore, a user is very much dependent on the community forum pages

(e.g., http://www.cfd-online.com/Forums and http://www.openfoamwiki.net), the

Extend project repositories (http://sourceforge.net/projects/openfoam-extend),

and inter-colleague discussions. The author would like to acknowledge the help received

from all the above-mentioned sources.
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2.5 Computational Grid

In any CFD solver, the discretized system of equations must be solved iteratively on a

spatial domain consisting of discrete grid points. The design of this computational grid

is very important, having a strong impact on the accuracy and stability of the solution.

In general, regions with strong gradient in the flow variables such as boundary layers

or shear layers must be resolved using a sufficient number of grid points. Furthermore,

some geometrical constraints may dictate the shape of computational cells resulting in

sharp internal angles or high aspect ratios which can cause instabilities or errors in the

numerical solution.

Using hybrid RANS/LES models, as it is done throughout this work, compounds the

difficulty in grid generation. These models incorporate both RANS and LES treatments

in the same field, therefore, the computation grid should satisfy further detailed criteria.

Grid convergence in LES is more subtle than grid convergence in RANS because in LES

the variables are filtered using a grid-dependent filter (see Sec. 2.1.3).

Considering these complexities in generation of a computational grid for hybrid

RANS/LES simulations, special attention is paid in this study in building the grids.

Specifically, all the computational grids used in this study are generated based on the

guideline provided by Spalart [96] who is one of the pioneers in hybrid RANS/LES sim-

ulations. According to this guideline, the requirements for the regions of the domain

where RANS treatment is expected to be active (e.g., boundary layers) are the same as

for a full-domain RANS simulation. For low Reynolds-number RANS models or those

with a two-layer zonal model for wall treatment (see Sec. 2.2.1.5), the requirement would

be that the first grid point should be located at y+ ≈ 2 or less, and the stretching ratio

∆yi+1/∆yi should be around 1.25 or less in the log layer [96]. In the directions parallel

to the wall, RANS practice would also be appropriate and the grid spacing is usually

determined based on the steepness of variations of the geometry. At least 10 grid points

would be used to discretize the outer region of the boundary layer where RANS mod-

eling is still active. Regions where LES treatment is expected to be active (e.g., near

the center of the draft tube) can be divided into the “focus region”, which is the region

where turbulence must be well resolved and a high resolution grid should be used, and

the “departure region” where lower grid resolution can be used. Obviously, a smooth

transition between these two regions is required. As an ideal choice for hexahedral cells,

computational grid cells should be as close as possible to the cubic shape in the “focus

region”. This can be justified considering the definition of the grid length scale, e.g., in

Eq. (2.28) [96]. There is no unique choice for the size of the grid in the “focus region”,
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however, a gross figure is provided by Spalart [96] discussing several flow problems.

In the present study, these detailed considerations become practically possible by

writing a script for the grid generation. A script in m4 language is written in order to

parametrize the blockMeshDict dictionary file which is used by OpenFOAM to build the

computational grid. Using this method, a detailed control over the generated mesh and

the possibility of parametric study on different grids become possible. The current script

can be modified easily to generate grids for circular geometries such as pipes, nozzles, dif-

fusers, sudden compression/expansion sections, and geometries including combinations

of these. The grid for the simplified draft tube in Chapter 4, and the abrupt expansion in

Chapter 5 are both generated using this script. The resultant mesh can then be exported

easily to both OpenFOAM and ANSYS-FLUENT.

Every circular cross section is divided into 13 blocks as shown in Fig. 2.4(a). Dis-

cretization is performed using an O-grid. The user should specify the size of each block,

i.e., R1 to R5, as well as the number of grids for each side of the block in both radial

and tangential directions. Furthermore, the stretching ratio of the grid points can be

adjusted independently for each block. This is very helpful in a hybrid RANS/LES sim-

ulation where two different models (with two different grid requirements) are used in

the same flow field. Figure 2.4(b) illustrates a computational grid generated using this

method.

(a) (b)

Figure 2.4: (a) Configuration of blocks for generating the computational grid and (b) a sample
mesh.



Chapter 3

Description of the Test Case: The

FLINDT Draft Tube

“Do what you can where you are with what you have.” - Theodore Roosevelt

One of the challenges any CFD study of draft tube faces is the lack of a test case for

which the geometry and boundary conditions, as well as detailed experimental data are

available. These experimental data are needed for assessment and validation of numerical

simulations. The measurements should include not only pressure fluctuations, but also

profiles of velocity components as well as turbulent quantities. Among the several exper-

imental studies reviewed for this study, those related to the FLINDT project [29] contain

these details. The FLINDT (FLow INvestigation in Draft Tubes) research project was

performed in the Laboratory for Hydraulic Machines (LHM) at the Swiss Federal In-

stitute of Technology of Lausanne (École Polytechnique Fédérale de Lausanne - EPFL)

in Lausanne, Switzerland. The project partners were the EPFL, Électricité de France,

Alstom, General Electric Canada, Sulzer Hydro, Va Tech Voest Alpine MCE, and Voith

Hydro. It aimed to “investigate the flow in hydraulic turbines draft tubes for a better

understanding of the physics of these flows and to build up an extensive experimental

data base describing a wide range of operating points which can provide a firm basis for

the assessment of the CFD engineering practice in this component” [29]. Nevertheless,

details of the draft tube geometry are not available in open literature and are limited to

the project partners. Furthermore, all the data related to the draft tube’s characteristics,

various operating conditions, and measurements are not reported in one openly accessi-

ble, comprehensive document, rather they are distributed in several articles, theses, and
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reports. These were the main challenges in providing a reliable test case for the present

numerical simulations. This chapter describes the FLINDT draft tube and summarizes

some of the challenges the author faced in obtaining the required data.

3.1 The Model Francis Turbine

The FLINDT project’s experiments were carried out on a scaled model (1:10) of an

existing Francis turbine with specific speed of νs=0.56. The original power plant was

built in 1926, but the runner was upgraded in the late 80s. In building the scale model

within the FLINDT research project, the original draft tube was replaced by a specially

designed elbow draft tube [29].

The turbine model (see Fig. 3.1 and Fig. 3.2) has a spiral case, stay ring of 10 stay

vanes, a distributor made of 20 wicket gates (guide vanes), a 17-blade runner of 0.4 m

outlet diameter (D in Fig. 3.2), and an elbow draft tube [29]. The draft tube geometry

includes the conical part of 17◦ angle and about 0.32 m length followed by a 90◦ curved

elbow and a rectangular section diffuser with a pier as shown in Fig. 3.3.

Figure 3.1: Cross section of the Francis turbine model investigated in the FLINDT project.
Source: Nicolet [97].

Figure 3.4 shows the evolution of the draft tube cross-section area from inlet to

outlet. The draft tube was equipped with a transparent cone (see Fig. 3.5), made with

polymethyl methacrylate, for the observation purposes as well as optical measurements.
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Figure 3.2: Components of the Francis turbine model investigated in the FLINDT project. Mod-
ified from Susan-Resiga et al. [24].

Figure 3.3: Side and top views of the FLINDT draft tube. Source: Susan-Resiga et al. [12].

3.2 Measurements

Three different measurement methods were used within the FLINDT research project,

namely wall pressure measurements [30, 98], PIV [32, 99, 36], and LDA [31, 36] (see

Fig. 3.6).

The unsteady wall pressure could be acquired simultaneously at up to 96 positions
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Figure 3.4: Change in the FLINDT draft tube cross-section area from inlet to outlet. Data
Source: Mauri [11].

Figure 3.5: Vortex rope formation inside the FLINDT draft tube. The draft tube cone was
transparent. Source: Iliescu et al. [32].

using piezoresistive pressure transducers (see Fig. 3.7). The measurement uncertainty

in wall pressure was estimated to be less than 3% [30]. The three-dimensional instan-

taneous velocity field in the draft tube cone was investigated with a PIV system (see

Fig. 3.8). The overall uncertainty of the 3-D PIV velocity fields was estimated to be 3%

of the mean velocity value [32]. The LDA system with a non-orthogonal optical arrange-

ment consisting of four optical access windows (see Fig. 3.9) was used to measure three

components of the velocity vector and six components of the Reynolds stress tensor. The

LDA measurements were performed in two survey sections in the draft tube cone (see
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Figure 3.6: Various measurement techniques including wall pressure sensors, LDV, and PIV were
used within the FLINDT project. Only nine pressure sensors (in two sections) are shown. Rref

is the runner radius (= 0.2 m). Source: Ciocan and Iliescu [99].

Fig. 3.6) located 84 mm and 242 mm downstream of the draft tube inlet respectively.

The uncertainties of the laser measurements were estimated to be 2% for the velocity

components and 3% for the Reynolds stress components [36, 11].

3.3 Draft Tube Geometry

As discussed above, the exact geometry of the draft tube is not available in open

literature. Therefore, the simplified FLINDT draft tube is investigated by some re-

searchers [12, 100, 101]. In this study, a simplified draft tube is studied first with results

being presented in Chapter 4. Then, a comprehensive investigation of the previously

published documents (theses, journal and conference papers, and reports) within the

FLINDT project is performed, in order to build a complete database with details of the

draft tube geometry (as much as possible) and available experimental data. Using this

database the three-dimensional FLINDT draft tube geometry was rebuilt as shown in

Fig. 3.10. To the best of author’s knowledge, this is the first attempt at regenerating the

FLINDT draft tube and making it available in open literature with all details required

for a CFD simulation.
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Figure 3.7: Pressure taps for unsteady wall pressure measurements. Source: Avellan [29].

Figure 3.8: Experimental setup for PIV measurements. Source: Ciocan and Iliescu [99].

The regenerated draft tube geometry includes the runner crown cone, the draft tube

cone, the 90◦ elbow, and the diffuser with a pier. Section S0 in Fig. 3.11 is located just

downstream of the trailing edge of runner blades. Sections S1 and S2 are the locations

within the draft tube cone where LDA measurements were performed in experimental

studies (see Fig. 3.6). They are located 84 mm and 242 mm downstream of the runner

outlet respectively. The static pressure was measured at the draft tube wall at sections

S1 to S6 using pressure transducers [11, 98]. The dimensions in Fig. 3.11 are given in

Table 3.1.
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Figure 3.9: The LDA paths for the flow survey in the draft tube cone. Modified from Avellan [29].

Table 3.1: Dimensions of the FLINDT draft tube shown in Fig. 3.11 (All dimensions are in mm).

a b c d e
122 68 400 503 161

f g h i j
316 52 1060 1978 631

3.4 Investigated Operating Conditions in this Study

According to the objectives of this study, four cavitation-free operating points are se-

lected covering a wide range (70% to 110% of the BEP flow rate) of operating conditions.

Table 3.2 summarizes the characteristics of these four operating points. The points of

interest are selected for the same head (energy) coefficient of ψ = 1.18 and different flow

rate coefficients of ϕ = 0.41, 0.368, 0.34, and 0.26 corresponding to about 110%, 99%,

91%, and 70% of the flow rate at the BEP.

Figure 3.12 shows the locations of these four operating points on the machine hill

chart. The pressure recovery factor in Fig. 3.12 is obtained by

χ =
p6 − p2

1
2ρ
(

Q
A2

)2 (3.1)
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Figure 3.10: Three-dimensional view of the regenerated FLINDT draft tube.

Table 3.2: Characteristics of investigated operating conditions.

Q/QBEP ψ ϕ Guide Vane
Opening [deg]

Case A 110% 1.18 0.41 27
Case B 99% 1.18 0.368 23
Case C 91% 1.18 0.34 21
Case D 70% 1.18 0.26 16

and calculated between section S2 and S6 in Fig. 3.11. Equation 3.1 is the simplified

form of Eq. 1.5 where the elevation difference is not considered (due to the small size of

the model) and the kinetic energy at the draft tube outlet is neglected compared to the

kinetic energy at the draft tube inlet [29].

Figure 3.13 shows the pressure recovery factor and the machine efficiency for these

four operating points. As expected, the maximum pressure recovery factor in the draft

tube is associated with the best efficiency operating condition. As the flow rate deviates

from the BEP condition, the pressure recovery factor decreases, especially under part-

load conditions. Specifically, decreasing the flow rate by 30% results in about 85%

reduction of pressure recovery factor in the draft tube (compare case D and case A).

Experimental studies were performed with two runner’s rotational speeds of 500

and 1000 rpm for cases A to C, and with the rotational speed of 750 rpm for case
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Figure 3.11: Side view of the regenerated FLINDT draft tube showing the investigated sections.
See Table 3.1 for dimensions.

D [24, 98]. The corresponding Reynolds numbers, based on the runner’s diameter (0.4

m) and angular velocity, are 4.2 × 106, 6.3 × 106, and 8.4 × 106 for 500, 750, and 1000

rpm respectively. No significant variation in the dimensionless velocity profiles (where

velocity is made dimensionless by the runner angular velocity × runner outlet radius, and

lengths are made dimensionless with respect to the runner outlet radius) was seen in the

experiments by changing the runner’s angular velocity (i.e., the Reynolds number) [24].

Moreover, the velocity profiles measured at the same discharge coefficient (ϕ) were not

sensitive to energy coefficient (ψ) changes within the investigated range of 1.0 to 1.3 [24].

Therefore, it is concluded that the only relevant parameter for the operating points

considered in this study is the turbine’s discharge coefficient.

Figure 3.14 shows the dimensionless axial and circumferential velocity profiles for four

cases of A to D measured at section S1. The evolution of the axial velocity component

is characterized by increasing the low velocity region at the center of the draft tube as

the turbine’s flow rate decreases. This region forms due to the wake of the crown cone

as well as the swirling nature of the flow tending to decrease the flow momentum near

the center and to increase it near the wall. The circumferential velocity increases as the

operating condition deviates from the BEP. This is due to the difference between the

angular momentum provided by the wicket gates and the one extracted by the runner.

However, the direction of the circumferential velocity (i.e., the direction of the swirl)
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Figure 3.12: Operational hill chart for the FLINDT Francis turbine showing isocontours of
machine efficiency (top) and draft tube pressure recovery factor (bottom). Operating points A-D
are studied in the present work, which are of the same head and different flow rates. Modified
from: Ciocan et al. [36] and Avellan [29].
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Figure 3.13: the draft tube pressure recovery factor and the machine efficiency for the studied
operating points. For each point the value of Q/QBEP is given in parentheses.

is inverted for the operating point at the higher flow rate (i.e., case A). The detailed

discussion on the direction of the swirl was given in section 1.2 around Fig. 1.10. The

circumferential velocity is quite high in case D resulting in a high level of swirl at the

inlet to the draft tube.

The swirl number is the ratio between the circumferential and the axial momentums,

and is defined in this case at the inlet as [12]

S =

∫ R

0
UV r2 dr

R

∫ R

0
U2r dr

(3.2)

with R being the runner’s radius, R = D/2, and V and U denoting the mean circumfer-

ential and axial velocities respectively. The inlet swirl number at the BEP is found to be

about 0.22 while it increases dramatically as wicket gates are further closed (part-load

operating conditions), namely to the value of 0.33 and 0.63 for cases C and D respectively.

By investigating the velocity profiles for these four points, with the same head and

different flow rates, the wicket gates operation can be described. For a given head, as
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(a) axial velocity (b) circumferential velocity

Figure 3.14: Comparison between velocity components ingested by the draft tube under various
operating conditions.

in this case, the flow rate through the turbine is adjustable by changing the opening

angle of the wicket gates. Adjusting the wicket gate angle results in two phenomena

simultaneously: changing the available flow area between the wicket gates, and modifying

the angle of attack by which water interacts with the runner blades. The former results

in changing the streamwise velocity through the runner and the draft tube, and the latter

ultimately changes the flow angle discharged from the runner and ingested by the draft

tube.

3.5 Summary

The draft tube of a model Francis turbine investigated in the FLINDT project [29] is

chosen for numerical studies in this work. The main reason for choosing this test case was

the availability of accurate and detailed measured data for several operating conditions.

The primary challenge, however, was that the geometry of the draft tube is not available

in open literature. Therefore, combining data from several documents [12, 10, 11, 24, 29,

30, 31, 32, 36, 98, 99, 101], the geometry of the FLINDT draft tube is obtained. Within

the present research study, the simplified FLINDT draft tube is investigated first with

results being presented in Chapter 4. Then, the complete elbow draft tube is numerically

investigated in Chapter 6.



Chapter 4

Simulations of the Flow in the

Simplified FLINDT Draft Tube

“Everything should be made as simple as possible... but not simpler.” - Albert Einstein

4.1 The Simplified Draft Tube

As discussed in Chapter 3, the exact geometry of the FLINDT draft tube is not available

in the open literature. Therefore, a simplified geometry (Fig. 4.1) based on the hydraulic

diameter of the actual draft tube is built using the same approach used by Susan-Resiga

et al. [12]. According to this approach the effect of cross section increase is discriminated

from the changes in cross section shape and bending the mean flow path, and therefore,

an axisymmetric straight diffuser is considered. In doing so, one practically focuses on

the decelerated swirling flow and vortex rope formation in the draft tube cone which is

indeed axisymmetric and hence is represented exactly using this model. The resulting

geometry consists of a straight diffuser with a total divergence angle of 17 degrees (equal

to the angle of the actual cone), followed by a long cylindrical section, as shown in

Fig. 4.1.

For the simulations in this chapter the data measured at section S1 (see Fig. 3.6

and Fig. 3.14) are used as the inlet boundary conditions, therefore the computational

domain starts 84 mm downstream of the actual draft tube inlet where the cone diameter

is 0.425 m. All the computational results in Sec. 4.2 and Sec. 4.3 are plotted at the

second measurement station, which is 158 mm downstream of the inlet section of the
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Figure 4.1: (a) FLINDT draft tube [29], (b) Simplified draft tube and 2D axisymmetric compu-
tational grid, and (c) 3D computational grid.

computational domain.

The 2D axisymmetric geometry corresponding to the meridian half-plane is dis-

cretized by 120,000 quadrilateral structured grids, while the 3D computational domain

consists of 2,028,000 structured cells. In both cases the grids are refined near the wall

as well as near the center of the draft tube as shown in Fig. 4.1(b) and Fig. 4.1(c). The

grid is built such that the y+ values of the grid points closest to the wall are of the order

of unity. This is important [102] since all turbulence models utilized in this study are

either low-Reynolds number models or are used within a two-layer zonal model for near

wall treatments. Furthermore, refinement of the grid near the center of the draft tube

is essential due to occurrence of large gradients. Grid sensitivity analysis in this study

shows that nonrefined grids result in convergence problems and as high as 10% error in

predictions.

At the inlet section, the radial profiles of axial and circumferential velocity compo-

nents as well as turbulent kinetic energy are obtainable from the mean circumferentially

averaged experimental data [24, 11, 36] by interpolation (see Fig. 3.14). Because of the

relatively high uncertainty and low magnitude of the radial velocity component in mea-

surements, a linear variation of this component is considered [11]. Turbulence dissipation
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rate is usually difficult to measure and thus is not available from experiments. Here, the

inlet profiles for the dissipation rate are computed from the turbulent kinetic energy pro-

files as ε = k3/2/l. The turbulence length scale l = 0.01R (R is the runner radius) has

been chosen according to previous studies [12] which are based on the analysis of LDV

measurements. Profiles of the specific dissipation rate at the inlet are obtained from

ω = k1/2/(Cµl) with Cµ = 0.09. No-slip conditions are applied at wall boundaries. At

the outlet section the radial pressure equilibrium (∂p/∂r = ρV 2
θ /r) is applied, which is

the reduced form of the radial momentum conservation equation. For the axisymmetric

case, zero radial and circumferential velocities, as well as zero gradients for axial velocity,

pressure, and turbulence quantities are applied at the centerline.

Two partial load operating points corresponding to case C (91% of the BEP flow rate)

and case D (70% of the BEP flow rate) in Table 3.2 are selected for simulations in this

chapter. Steady and unsteady numerical simulations are carried out for axisymmetric

and three-dimensional grids. In steady simulations the objectives are to study the global

parameters, mean flow fields and the abilities of various turbulence models in predicting

mean flow quantities, whereas in unsteady simulations, transient features of the flow and

vortex rope behavior and its effects are studied.

4.2 Steady Axisymmetric Simulations

Figure 4.2 shows the streamline patterns in the meridian half-plane obtained from steady

axisymmetric simulations with the standard k-ε model for two cases (case C with 91%

and case D with 70% of the BEP flow rate). Although the helical vortex rope is a three-

dimensional, unsteady phenomenon, it can be inferred from the steady axisymmetric

flow field considering the reverse flow region (recirculation bubble) visualized by the

streamlines. This region is developed as a result of flow deceleration along the axis, and

its size represents the vortex rope size and strength [27]. For case C the reverse flow

region starts at the axial location of about 0.35 m and ends at about 0.85 m while for

case D a considerably larger bubble starting from the inlet of the draft tube (z=0) and

continuing up to z=0.85 m is seen. This large recirculation bubble blocks the flow path

and reduces the pressure recovery in the draft tube.

The reduction in draft tube efficiency is investigated quantitatively considering the

parameters evaluating the performance of the draft tube such as kinetic energy recovery

coefficient, pressure recovery coefficient, and loss coefficient. The main purpose of a

hydraulic turbine draft tube is to convert as much as possible the kinetic energy of the
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Figure 4.2: Streamline patterns for the steady axisymmetric simulation of flow in the simplified
draft tube, (a) case C (91% of BEP flow rate), and (b) case D (70% of BEP flow rate).

flow leaving the runner into static pressure with minimum hydraulic losses. In order

to analyze the kinetic energy-to-pressure transformation process the following integral

quantities on a generic cross section S(z) at the axial distance z from the inlet section

are considered [103]

Flux of static pressure

Π(z) ≡
∫

S(z)
p(r, z)V.n dA (4.1)

Flux of kinetic energy

K(z) ≡
∫

S(z)
ρ
V 2(r, z)

2
V.n dA (4.2)

Flux of mechanical energy

E(z) ≡ Π(z) +K(z) (4.3)

Kinetic energy recovery coefficient

Ckr(z) ≡ 1− K(z)

K(0)
(4.4)
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Pressure recovery coefficient

Cpr(z) ≡
Π(z)−Π(0)

K(0)
(4.5)

Kinetic energy-to-pressure conversion coefficient

Ccr(z) ≡
Π(z)−Π(0)

K(0)−K(z)
=
Cpr(z)

Ckr(z)
(4.6)

Loss coefficient

Cl(z) ≡
E(0) − E(z)

K(0)
= Ckr(z)− Cpr(z) (4.7)

For a loss-free flow the flux of mechanical energy E is constant. However, when

hydraulic losses are present, E decreases monotonically with axial direction, i.e., for

increasing z in this case (note z=0 is the draft tube inlet with z increasing towards

downstream). These losses are normalized by the flux of kinetic energy at the draft tube

inlet and represented by the loss coefficient Cl (Eq. 4.7). Furthermore, the performance

of the draft tube can be evaluated using the kinetic energy-to-pressure (dynamic-to-static

pressure) conversion coefficient Ccr (Eq. 4.6) which quantifies the transformation of the

kinetic energy to static pressure within the draft tube. Obviously, higher Ccr and lower

Cl are always desired for a draft tube. Table 4.1 shows these parameters calculated for

the present simplified draft tube between inlet and a section 1 m downstream (Sec. A in

Fig. 4.1). It is seen that the kinetic energy and pressure recovery coefficients are reduced

by about 5% and 46% respectively by decreasing the flow rate from 91% of the BEP

(case C) to 70% of the BEP (case D). Reduction of the kinetic energy recovery coefficient

shows that the flow has relatively more kinetic energy at the draft tube outlet which will

be wasted. This is due to the fact that the flow is blocked by the stagnant region near

the center and forced to accelerate elsewhere as a result of conservation of mass principle.

The main effect, however, is seen in the pressure recovery factor where considerably less

kinetic energy is transformed into static pressure and the rest is dissipated by friction in

the draft tube. This results in 43% reduction in the kinetic energy-to-pressure conversion

coefficient in case D, while the loss coefficient associated with this case is 5 times larger

than the one associated with case C. The sudden increase in the draft tube losses in

part-load conditions has also been reported in previous studies [48]. Overall, this high

level of losses in the draft tube results in considerable reduction of power plant total
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efficiency.

Table 4.1: Draft tube performance parameters calculated between inlet section and a section 1
m downstream (Sec. A in Fig. 4.1).

Case C Case D

Q/QBEP 91% 70%
Ckr 0.7114 0.6747
Cpr 0.6465 0.3481
Ccr 0.9088 0.5159
Cl 0.0649 0.3266

In order to investigate the capability and limitation of RANS models, simulations are

also performed using the various turbulence models introduced in Chapter 2, and results

are compared with the experimental data [11, 36] on a section located 158 mm down-

stream of the inlet. Figure 4.3 shows axial and circumferential velocity, and turbulent

kinetic energy profiles for case C, obtained using three models, i.e., standard and realiz-

able k-ε, and SST k-ω, in comparison with experimental data. As shown in Fig. 4.3(a),

no considerable difference is seen in predictions away from the center of the draft tube,

and all models show relatively good agreement with measured data. However, models

underpredict the axial velocity near the centerline. Best agreement is seen in results

of the SST k-ω model, still underpredicting the axial velocity by 14%. Predictions of

the realizable k-ε model, on the other hand, show as much as 73% deviation from the

data. It should be noted again that the uncertainties in measurements were estimated

to be less than 2% [11, 36]. Interestingly, no improvement is seen by applying the re-

alizable k-ε model instead of the standard k-ε model. Predictions of all models for the

circumferential velocity are nearly the same, showing a relatively good agreement with

data, namely 7% average deviation (see Fig. 4.3(b)). Turbulent kinetic energy (TKE)

profiles are compared in Fig. 4.3(c). It is equally important to correctly predict TKE

since it is directly used to calculate the eddy viscosity in the momentum equation, and

therefore affects the velocity and pressure fields. Again, acceptable results (within 10%

of data) are obtained away from the center, while results near the centerline region

(−0.05 m ≤ r ≤ 0.05 m) are quite poor with at least 40% underpredictions together

with a non-physical local minimum in the TKE profiles at the centerline. It appears

that RANS models do not capture the correct production and diffusion of TKE near the

center of the flow (see Sec. 4.6 for more details). This class of models has been developed

for and calibrated by use of data from simple, steady flows near walls. Therefore, they

are insufficient for predicting strong free shear-layers as in the case of the part-load draft
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tube flow where a strong vortex is present. This underprediction of TKE is the reason

for underestimation of the axial velocity as seen in Fig. 4.3(a) since in the simulations the

diffusion of momentum to the centerline is lower than expected in real life as evidenced

by the experimental data. This is caused by low TKE values obtained in simulations as

compared to the data.

The deviation between simulation results and data becomes larger as turbine’s dis-

charge decreases (farther away from the BEP). As shown in Fig. 4.4(a), all models

completely fail in correctly predicting the level of the axial velocity near the centerline

for case D. All models predict a large backflow region, and as a result, overpredict the

level of the velocity outside of the shear flow region, while no reverse flow is observed

within experimental data. It explains that in this case the flow is much more complicated

due to higher level of swirl, larger stagnant region, and stronger shear layer, and RANS

models cannot handle these complicated flow phenomena. Model predictions for the

circumferential velocity component also deteriorate as one compares case C (Fig. 4.3(b))

and case D (Fig. 4.4(b)); Results show as much as 47% difference with data for case D.

No experimental data for turbulent kinetic energy are found in the literature for case D,

however, simulations predict a large local minimum near the centerline (not shown here)

which is expected not to be seen in the experiment.

Based on these results, it is concluded that the traditional two-equation RANS models

cannot correctly predict the turbulent kinetic energy and thus the axial velocity near the

center of the draft tube, where the low-velocity inner region interacts with outer flow and

the vortex rope forms. The precessing vortex rope enhances the mixing and turbulence

production and diffusion that cannot be modeled using these turbulence models in the

RANS framework. Further discussions on this issue and a possible solution are given in

Sec. 4.6.

4.3 Steady 3D Simulations

Results of the three-dimensional steady simulations are presented in this section. The ob-

jectives are to compare steady 3D and 2D axisymmetric simulations, and to examine if a

steady 2D axisymmetric solution (as presented in Sec. 4.2) is adequate in these cases. Fur-

thermore, simulations are carried out using two CFD codes, namely OpenFOAM [53] and

ANSYS-FLUENT [52]. As discussed in Sec. 2.4.2, OpenFOAM is an open-source library

designed for development of multi-dimensional modeling codes. It includes numerous

C++ classes for development of customized numerical solvers and pre-/postprocessing
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Figure 4.3: Profiles of (a) axial velocity, (b) circumferential velocity, and (c) turbulent kinetic
energy in the simplified draft tube for case C, comparison of results of various turbulence closure
models.
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Figure 4.4: Profiles of (a) axial velocity, and (b) circumferential velocity in the simplified draft
tube for case D, comparison of results of various turbulence closure models.

utilities for the solution of continuum mechanics problems, including CFD. The users

can easily make changes to and develop the software features. Therefore, OpenFOAM

has a prospect to be widely used in CFD simulations. However, it is required to validate

its results against a commonly-used commercial CFD code such as ANSYS-FLUENT.

Steady simulations are carried out on the 3D grid (Fig. 4.1(c)) utilizing the same bound-

ary conditions, numerical schemes, and turbulence models in OpenFOAM 1.7 [53] and

ANSYS-FLUENT 13.0 [52]. Since no significant improvement is seen in the previous 2D
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axisymmetric simulations applying more complicated turbulence models, the baseline

standard k-ε turbulence model is chosen for the steady 3D simulations. Figure 4.5(a)

and 4.5(b) show the axial velocity profiles for case C and case D respectively in com-

parison with experimental data. It is seen that OpenFOAM and ANSYS-FLUENT give

nearly identical results in both cases. Also, axial velocity profiles obtained from steady

3D simulations and those obtained from 2D axisymmetric simulations almost coincide,

both showing underpredictions. Therefore, it is concluded that steady RANS modeling

with symmetric boundary conditions cannot generate asymmetric results for this type

of flow.

4.4 Unsteady 3D Simulations

Unsteady simulations are carried out in order to model the vortex rope formation in

the draft tube. The standard k-ε and the SST k-ω turbulence models are used within

the URANS approach, and the detached eddy simulation (DES) is used as a hybrid

URANS/LES model. Steady, symmetric inlet boundary conditions, as discussed in

Sec. 4.1, are applied and unsteady simulations are initialized by their corresponding

steady solutions. The time step size is taken corresponding to one degree rotation of the

runner which is known to be sufficient for hydroturbine applications [36, 9]. For each

time step, the solution is considered to be converged when residuals drop to 10−9 or

maximum 30 subiterations achieved. Unsteady simulations are performed for 40,000 it-

erations corresponding to about 110 revolutions of the runner on a 4-CPU Linux cluster.

Each time step takes 18.6 seconds using the standard k-ε model and 21.6 seconds using

the DES model.

Figure 4.6 compares the results of URANS and DES simulations. Isopressure sur-

faces representing the vortex rope are depicted for an instance in time. For the sake of

consistency, the isosurfaces of static pressure equal to -18,000 Pa (gauge pressure) are

displayed in all cases. It can be seen that URANS models cannot capture the self-induced

unsteadiness of the vortex rope and give steady symmetric results (similar to RANS) due

to steady symmetric boundary conditions. In order to further explain this insufficiency,

it is required to identify different categories of unsteady flows. The first category con-

sists of flows with large time scale unsteadiness where a distinguished scale separation

exists between the unsteadiness of the mean flow and turbulence. A generic example

may be problems that involve fluctuating boundary conditions. URANS models can be

successfully used in this category where the flow is forced to be unsteady because of



66

Figure 4.5: Profiles of axial velocity for (a) case C, and (b) case D in the simplified draft tube,
comparison of axisymmetric and three-dimensional simulations.

unsteady boundary conditions. The second category includes flows with small time scale

unsteadiness where the scale of the unsteady structures is near that of turbulence. This

type of flow usually contains energetic eddies and strong instabilities which overwhelm

the turbulence inherited from the upstream boundary conditions. In this category, it is

difficult to distinguish between the unsteadiness and turbulent fluctuations; hence, it is

quite challenging to correctly model the flow behavior. The present problem is an ex-

ample of the second category, where small time scale, self-induced unsteadiness presents
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within the flow. This type of unsteadiness is a form of the Kelvin-Helmholtz instabil-

ity and is due to the roll-up and breakdown of the shear layer at the interface of the

central region with lower velocity (due to the wake of the crown cone) and swirling, high-

velocity region farther away. The URANS approach does not differentiate between this

small time scale unsteadiness of the vortex rope and turbulent fluctuations and hence

averages away all the unsteadiness of the flow resulting in steady solutions. Applying the

DES model, when the vortex rope unsteadiness is resolved in an LES manner, detailed

unsteady features of the flow can be captured sufficiently, resulting in a nonsymmetric

precessing vortex rope as shown in Fig. 4.6.

Figure 4.6: Isopressure surfaces in the draft tube for an instance in time, comparison of results
using three different unsteady turbulence closure approaches.

Based on these results, the DES turbulence model is chosen for further unsteady

simulations. Figure 4.7 compares the vortex rope resulting from these simulations with

experimental visualizations for both case C and D. The vortex rope developed in case

D is considerably larger both in diameter and length. As seen in this figure, the helical

vortex has a short wavelength and a small diameter near the best efficiency region and

its length and diameter increase as the flow rate is decreased. The overall shape of the

vortex rope agrees well with the experimental visualizations [104] for both operating

conditions as shown in Fig. 4.7. It should be noted that experiments were performed

for different cases (with and without cavitation) [36, 104]. Here, numerical results are

compared quantitatively with experimental data for a noncavitating case, while the shape

of the vortex rope is compared qualitatively with the case with cavitation, since no

experimental visualization was performed for the noncavitating case. However, regardless

of the cavitation number, the vortex rope can be formed and can affect the performance

of the draft tube.

As discussed in Chapter 1, formation of the vortex rope is associated with pressure
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Figure 4.7: Vortex rope visualized by isopressure surfaces for (a) case C (91% of the BEP flow
rate), and (b) case D (70% of the BEP flow rate) in comparison with experimental visualiza-
tions [104].

fluctuations in the draft tube. Figure 4.8 shows the evolution of wall pressure with time

in the draft tube cone for point PP in Fig. 4.1(b), 0.1 m downstream of the inlet section,

during unsteady simulations of case D. It takes about 2 seconds (corresponding to 12,000

iterations and 33 rotations of the runner) to reach the periodic unsteady (quasi-steady)

state. Simulations are performed for more than 4 seconds (24,000 iterations) after this

point to make sure that a well-converged solution is obtained.

Pressure fluctuations due to the vortex rope have large amplitude, as high as twice

the local mean pressure value, and low frequency as shown in Fig. 4.8(a). The dominant

frequency of the pressure fluctuations can be obtained by performing a fast Fourier

transform (FFT) on the results (time to frequency transformation). Figure 4.8(b) shows

the normalized frequency spectrum obtained from present simulations. The vortex rope

frequency is found to be about 0.318 of the runner rotation frequency. This is in good

agreement with the value of 0.3 obtained from experimental studies [36] (only 6% error).

It should be noted that the effect of a 90-degree elbow is mainly to increase the amplitude

of the pressure fluctuations due to interaction between the vortex core and secondary
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Figure 4.8: (a) Wall pressure fluctuations in the simplified draft tube for point PP in Fig. 4.1(b),
and (b) their normalized frequency spectra showing the frequency of the vortex rope precession.

flows; however, resonance phenomena and frequency of fluctuations remain unchanged

since the excitation source is still generated as explained in Ref. [33]. Therefore, only

the frequency (and not amplitude) of the fluctuations is compared with data here.

The physics behind the formation of a vortex rope is analyzed in this study. It is

confirmed in the present simulations that the development of the vortex rope is associated

with formation of a stagnant region at the center of the draft tube. The flow is stopped

or even reversed in this region. This is mainly due to the wake behind the crown cone

as well as the swirl, which tends to decrease flow momentum near the centerline and



70

increase it near the wall. Figure 4.9 shows formation of the vortex rope in the draft tube

cone obtained from unsteady simulations with DES. Instantaneous isopressure surfaces

(dark) representing the vortex rope and isoaxial velocity (U=0) representing the stagnant

region (light) are shown in this figure. The stagnant region was represented in steady

simulations by the recirculation bubble. It can be seen that the rope forms at the

interface between this stagnant region and highly swirling outer flow. In fact, the vortex

rope is wrapped around the low-velocity inner region. The physical mechanism of vortex

rope formation can be related to the Kelvin-Helmholtz instability which occurs when a

velocity gradient is present within a continuous fluid. The shear layer at the interface of

two flows with different velocities may roll up resulting in formation of vortices spinning

with high angular velocity. Pressure drops within these vortices according to the radial

momentum conservation, which may result in cavitation as seen in many experiments

related to draft tube flow [32, 36, 104]. Based on these results possible controlling

mechanisms for the prevention of vortex rope formation can be introduced, which is

based on the elimination of the stagnant and reversed flow region. This is investigated

in Chapter 7.

Figure 4.9: Isopressure surface (dark) representing vortex rope and isovelocity surface (light)
representing the stagnant region for (a) case C and (b) case D for an instance in time.
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4.5 The Vortex Rope Frequency

As shown in Sec. 4.4, the formation of the vortex rope in draft tubes results in strong

pressure fluctuations. Two main parameters characterizing these fluctuations are their

amplitude and frequency. The amplitude of the pressure fluctuation, usually quantified

by the root-mean-square (rms) of the oscillation, defines the magnitude of the oscillatory

force experienced by the power plant components due to the rotation of the vortex

rope. Therefore, as it is obvious, higher-amplitude oscillations are more critical. The

frequency of fluctuation, also known as the vortex rope frequency or the draft tube

surge frequency, becomes important when it gets close to the natural frequency of the

draft tube structure1. In this condition the pressure pulsation observed at different

circumferential locations becomes approximately synchronous and shows a resonance-

like behavior [105]. This is extremely harmful for a hydropower plant and is considered

as a “forbidden” or “no-go” operating condition. Therefore, it is important to study the

vortex rope frequency (Pressure fluctuation amplitude is studied in Chapter 6.).

The frequency of the vortex rope is generally known to be around 0.2-0.4 of the

frequency of rotation of the runner. The earliest prediction of the vortex rope frequency

was performed by Rheingans [106], who found the following relationship between the

frequencies of the vortex rope fv and the runner fr

fv
fr

≃ 1

3.6
≃ 0.278 (4.8)

Later, Hosoi [107] developed the following empirical relation using model tests

fv
fr

≃ 1

2

(ra
R

)2
(4.9)

where ra is the radius of the vortex core and R is the draft tube radius. Experiments [107]

indicated that ra/R varies between 0.7 and 0.8, therefore, Eq. (4.9) agrees with Eq. (4.8)

of Rheingans [106].

Following Cassidy [108] and Falvey and Cassidy [109], a dimensional analysis can

be performed to obtain a relation for the vortex rope frequency. The frequency f is

considered to be a function of

• Fluid density ρ
{
ML−3

}

1More exactly speaking, the natural frequency of the draft tube structure together with the contained
fluid which becomes critical when cavitation occurs and vapor forms in the flow. The cavitating vortex
rope is out of the scope of this work.
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• Fluid kinematic viscosity ν
{
L2T−1

}

• Draft tube inlet diameter D {L}

• Draft tube length L {L}

• Flow rate Q
{
L3T−1

}

• Flow rate of the angular momentum Ω ≡
∫
ρ
(
~r × ~V

)
V.n dA

{
ML2T−2

}

in a functional relationship as

F (f, ρ, ν,D,L,Q,Ω) = 0 (4.10)

Considering f , Ω, ν, and L as independent variables which are related to ρ, D, and

Q, one may perform a dimensional analysis to obtain four dimensionless groups

• Π1 =
(
fD3

Q

)
The non-dimensional frequency of the vortex rope (The frequency

parameter)

• Π2 =
(

ΩD
ρQ2

)
The non-dimensional angular momentum of flow entering the draft

tube (The swirl number S)

• Π3 =
(

Q
νD

)
The Reynolds number

• Π4 =
(
L
D

)
The draft tube length-to-diameter ratio

Therefore

(
fD3

Q

)
= g

[(
ΩD

ρQ2

)
,

(
Q

νD

)
,

(
L

D

)]
(4.11)

At large Reynolds numbers (typical in hydro applications) the viscous effects are neg-

ligible. Therefore, it can be assumed that the frequency is independent of the Reynolds

number. Therefore, for a given draft tube with a fixed geometry (i.e., L/D =const.) the

frequency of the vortex rope is a function of only the swirl number, i.e.,

(
fD3

Q

)
= g

(
ΩD

ρQ2

)
= g(S) (4.12)

The exact form of the function g is obtainable by performing extensive experiments for

several inlet swirl numbers. It should be noted that g is unique for a specific draft tube

shape.
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In order to obtain a relation for the vortex rope-to-runner frequency ratio, the flow

rate in the left-hand side of Eq. (4.12) is replaced by the discharge coefficient using

Eq. (1.3). Furthermore, considering R = D/2 being the draft tube inlet radius (equal

to the runner outlet radius) and ω = 2πfr being the runner angular velocity, Eq. (4.12)

can be written as

fv
fr

=
π2

4
ϕg(S) (4.13)

As discussed in Chapter 1, a hydroturbine typically has a constant head and rota-

tional speed, and the flow rate is adjusted by the wicket gate opening which defines

the operating point of the machine. Therefore, for a typical Francis turbine with a

known head and rotational speed, the right-hand side of Eq. (4.13) is a function of only

the wicket gate opening (WGO). Wicket gates add an angular momentum Ω0 to the

flow, part of which is extracted by the runner as the torque T . Therefore the angular

momentum of the flow leaving the runner and entering the draft tube is

Ω = Ω0 − T = Ω0 −
P

ω
(4.14)

where P = ηρgH is the runner mechanical power and ω is the angular velocity of the

runner. Using Eq. (4.14), the dimensionless angular momentum parameter (the swirl

number) can be written as

S =
ΩD

ρQ2
=

Ω0D

ρQ2
− PD

ρQ2ω
(4.15)

The first term on the right-hand side of Eq. (4.15) is called the wicket gate momentum

parameter and can be related directly to the WGO. For example, it is shown [110] that

Ω0D

ρQ2
= 59 (WGO)−1.18 (4.16)

where WGO is the opening angle of the wicket gates in degrees, measured from 0 when

fully closed. Figure 4.10 shows the value of the wicket gate momentum parameter as a

function of the gate opening.

The second term on the right-hand side of Eq. (4.15) is the swirl extracted from the

flow by the turbine runner. Using head and flow rate coefficients (Eq. (1.2) and (1.3)
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this term can be written as

PD

ρQ2ω
=

1

π

(
ψ

ϕ

)
(4.17)

Figure 4.10: The change in the wicket gate momentum parameter Ω0D
ρQ2 with wicket gate opening

angle.Source: Wahl [110].

By substituting Eq. (4.16) and (4.17) in Eq. (4.13), another form for the vortex

rope-to-runner frequency ratio is obtained

fv
fr

=

(
π2ϕ

4

)
g

[
h(WGO)− 1

π

(
ψ

ϕ

)]
(4.18)

where h is some function of WGO, for example, the right-hand side of Eq. (4.16). This

form clearly shows that the ratio between the frequencies of the vortex rope and the

runner is a function of only the WGO which defines the flow rate coefficient ϕ for a

specific machine with fixed head ψ and rotational speed ω.

The simplest choice for the function g is a constant. This is inspired by the ex-

perimental measurements of Wahl [110] in a model (1:40) test of the 700 MW turbine

installed at the Grand Coulee third power plant. As shown in Fig. 4.11, the frequency

parameter is almost constant for swirl numbers less than one (remember that the swirl

number in the FLINDT draft tube for case D with 70% of the BEP flow rate was 0.63.).
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Figure 4.11 suggests the value of 0.5 for the frequency parameter, i.e.,

(
fD3

Q

)
= 0.5 (4.19)

Hence, using Eq. (4.13), the relation for the vortex rope frequency is found to be

fv
fr

=

(
π2

8

)
ϕ (4.20)

In the case of the FLINDT draft tube, for the operating point D with ϕ = 0.26,

Eq. (4.20) gives the value of fv/fr = 0.32 which is in close agreement with the experi-

mental value of 0.3. Furthermore, the linear increase of the vortex rope frequency with

the discharge coefficient (suggested by Eq. (4.20)) is shown in Ref. [111].

Figure 4.11: The change in the frequency parameter fD3

Q
with the swirl number ΩD

ρQ2 . Data

source: Wahl [110].

As stated above, a more comprehensive form of the function g can be obtained by

performing extensive experimental or numerical studies. Furthermore, the effect of the

draft tube shape on the surge frequency should be investigated. One such study was

performed by Palde [14] who conducted extensive experiments using simplified models

with air flow to correlate the draft tube shape and the draft tube surge characteristics.

Palde stated that the draft tube shape has significant influence on the surging charac-
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teristics. However, it seems that this influence is more evident for the amplitude than

for the frequency. In addition, the degree of divergence of the draft tube and the throat

geometry were found to have more effect than the remaining downstream portion of the

draft tube including the bend and the pier [14].

4.6 Development of an Axisymmetric Model for Draft Tube

Flow at Partial Load

While agreeing with the fact that 3D unsteady simulations are necessary in predicting the

behavior of the vortex rope in a draft tube operating under partial load, it should be noted

that such computations are expensive in terms of both time and computing resources.

As a result, more computationally tractable techniques are required for performance

evaluation and design optimization purposes. These techniques would be useful, for

example, in optimization of the shape of the runner blades in order to reduce the stagnant

region extent, thus mitigating the vortex rope.

One such method is to analyze the draft tube flow at partial load by using an axisym-

metric swirling flow model and steady simulations [101]. Obviously, the axisymmetric

hypothesis is a major simplification having the main benefit of dramatically reducing the

computational cost. On the other hand, it introduces important limitations as far as the

three-dimensionality and unsteadiness are concerned. The inherent flow instability in

the draft tube leads to a fully 3D unsteady flow field with precessing vortex rope when

the Francis turbine is operated at partial discharge. As a result, the axisymmetry as-

sumption is obviously violated. However, one can conjecture that an axisymmetric flow

model can represent the circumferentially averaged three-dimensional unsteady flow. In

other words, instead of circumferentially averaging the 3D unsteady computational re-

sults one can perform averaging on the governing equations in cylindrical coordinates,

thus solving a 2D axisymmetric problem in a meridian half-plane [101, 112].

Nevertheless, one important issue to be addressed is the effect of neglecting the

actual precessing vortex rope when computing directly the circumferentially averaged

flow. As shown in the present numerical simulations (see the discussion around Fig. 4.3

and Fig. 4.4) and also previous studies [12, 101, 113], steady RANS turbulence models

underpredict axial mean velocity and turbulent kinetic energy near the center of the

draft tube. This is attributed mainly to the incapability of these models in predicting

the mixing in the shear layer associated with the vortex rope. This strong shear layer

forms at the interface between a stagnant region at the center of the draft tube and the
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outer flow. The stagnant region can be understood as the extent of the wake of the crown

cone which is the average of the highly fluctuating flow field where the vortex rope wraps

around. Susan-Resiga et al. [101] introduced a stagnant region model (SRM) which

essentially enforces a unidirectional circumferentially averaged flow, by switching the

axial and radial velocity directions and letting the swirl velocity equal to zero, whenever

a negative (i.e., upstream oriented) axial velocity is detected. Although this model

improved results in comparison to the original 2D simulations, it seems to be nonphysical

and yet shows considerable deviations from the experimental data. In this section a new

approach is considered, which is to develop a new RANS turbulence model in order to

correctly predict the mean flow field in a draft tube operating under partial load using

an axisymmetric model.

4.6.1 Investigations of RANS Turbulence Models

Steady RANS simulations of flow in the simplified draft tube performed in Sec. 4.2

showed underprediction of the axial velocity and turbulent kinetic energy near the center

of the draft tube. The deviation from the experimental data increases considerably,

moving farther from the best efficiency condition. Since no considerable improvement

in predictions was seen applying different turbulence models, the two-equation standard

k-ε turbulence model with two-layer zonal model for near wall treatment is chosen for

development of the axisymmetric model in this section.

Figure 4.12: Investigated sections in the simplified draft tube.
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In order to further investigate the flow field inside the draft tube, six cross sections

(X1 to X6) are chosen as shown in Fig. 4.12. The streamwise (z) value associated with

these cross sections are given in Fig. 4.12. Figure 4.13 shows the distributions of the

turbulent kinetic energy (TKE) production on these six sections. Production of TKE

can be written as

P = 2νtSijSij = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(4.21)

Results are shown for two partial load cases, i.e., for case C and case D. Note that

near-wall region (R > 0.2 m) is not shown in Fig. 4.13 in order to better present the

results near the centerline (R = 0). Nevertheless, one can infer that P has a considerable

peak near the wall due to high velocity gradients resulting in high TKE generation.

It can be seen that in both cases P has another peak near the center of the draft tube

which moves farther from the centerline as the flow moves downstream. This maximum

in TKE production shows the generation of turbulent kinetic energy near the centerline

which can be attributed to the formation of a strong shear layer between stagnant region

and the outer flow. Therefore, the location of the peak in TKE production may provide

information about the location of the shear layer, i.e., the location of the boundary

between stagnant region and outer flow. This is investigated in this study by locating

the point of the maximum P value for each section and by plotting the radial distance

of these points from centerline, as shown in Fig. 4.14. It is seen in Fig. 4.14 that a line

can be fit through these data with very good precision. This line represents the location

of the maximum TKE production due to the formation of the shear layer in the draft

tube.

It was shown in Sec. 4.4 that the vortex rope is formed due to the role-up of this

shear layer and wraps around a stagnant region in the draft tube. Therefore, the average

location of the shear layer shown by the line in Fig. 4.14 represents the average location

of the vortex core in the rope. This is validated by comparing with the experimental

data of Ciocan and Iliescu [99] who used PIV to investigate the flow field in the draft

tube cone and to locate the vortex core. They showed that the vortex rope wraps around

a conical surface, and found the angle of inclination of this cone to be 17 degrees, twice

the cone’s inclination. The slope of the line fitted through maximum P points for case

D (see Fig. 4.14(b)) is found to be 16.5 degrees which is in very good agreement with

measurements of Ciocan and Iliescu [99]. This is better presented in Fig. 4.15 where

the line of maximum TKE production obtained from steady axisymmetric simulations,

PIV data of Ciocan and Iliescu [99], and 3D unsteady simulation results (details of these
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Figure 4.13: Radial distributions of the turbulent kinetic energy production at several streamwise
sections for (a) case C, and (b) case D in the simplified draft tube.

simulations are given in Chapter 6) are shown together. It can be seen that there is a

very good agreement between all three methods in locating the vortex core. Therefore,

it is concluded that the line of the maximum TKE production obtained from steady

axisymmetric simulations represents the surface of the cone (in 3D) where the vortex

rope wraps around.

This is a very important finding, since it shows that although 2D axisymmetric

simulations cannot model the vortex rope, they can give the average location of the

boundary between the stagnant region and the outer swirling flow, i.e., the average

location of the vortex rope in the conical part of the draft tube. Nevertheless, the level of
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Figure 4.14: Locations of the peaks in TKE production P in the simplified draft tube for (a)
case C, and (b) case D (also see Fig. 4.13). A line can be fit through these points with very good
precision.

the TKE production may not be predicted correctly resulting in underprediction of TKE

and axial velocity at the center of the draft tube as shown in Fig. 4.3 and Fig. 4.4. This

is investigated by comparing the production obtained by the axisymmetric k-ε RANS

simulations (Eq.(4.21)) with the one obtained by the 3D unsteady DES simulations. In

the DES simulations, the production of TKE can be obtained by

P = −uiuj
∂ūj
∂xi

(4.22)
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Figure 4.15: Locations of the vortex core in the draft tube, comparison between (◦) PIV mea-
surements of Ciocan and Iliescu [99], (•) 2D axisymmetric predictions and a line fitted through
them, and contours of the instantaneous pressure (Pa) field in the background obtained from 3D
unsteady simulations.

which is due to the interaction between resolved-scale velocity gradient (
∂ūj

∂xi
) and subfilter

Reynolds stresses (uiuj).

As depicted in Fig. 4.16, the level of the TKE production is underpredicted by RANS

simulations comparing to the DES results, while the location of the maximum TKE

production is well captured which is consistent with the previous observation.

Additionally, overprediction of the drop in TKE at the centerline (the difference

between the level of TKE at the centerline and the peak associated with the shear layer)

predicted by the RANS simulations (see Fig. 4.3(c)) indicates that the level of TKE

diffusion is not correctly predicted either. Therefore, a modified model should deal with

correcting the level of TKE production and diffusion within the shear layer and stagnant

region in the draft tube.

4.6.2 Model Development and Results

It was argued in the previous section that steady RANS models underpredict the tur-

bulent kinetic energy production and diffusion in regions of the flow where the vortex

rope forms. This is summarized graphically in Fig. 4.17 where turbulent kinetic energy
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Figure 4.16: Radial distributions of the TKE production at section X3 in the draft tube, com-
parison between DES and RANS simulations.

is plotted in the draft tube (same as Fig. 4.3(c)). It should be noted that this conclusion

holds for both 2D axisymmetric and 3D steady RANS simulations since no difference is

seen between results of these simulations (see Sec. 4.3). Nevertheless, the focus of the

present section is on 2D axisymmetric modeling.

The goal of the present section is to take the effects of extra production and diffusion

of TKE due to the vortex rope unsteadiness into account using a physical model. The

extra production and diffusion can be physically understood as coherent or local turbu-

lence production/diffusion as opposed to the mean production/diffusion. The Kelvin-

Helmholtz instabilities associated with the formation of the vortex rope (see Sec. 4.4)

locally generate turbulence as shown experimentally in other flow problems including

a strong shear layer [114, 115, 116]. The shear layer instabilities yield a considerable

kinetic energy transfer from the mean flow to the vortices in the region where the shear

layer roll-up occurs. Scarano et al. [114] experimentally investigated the turbulent sep-

arated flow over a backward facing step and found a relationship between the coherent

structures in the shear layer and the production of TKE. In their work, the dominant role

of the coherent structures in the production of TKE is confirmed by the high values of

coherent production compared with the corresponding mean production. Furthermore,

they stated that regions with considerable TKE production correspond to the area where

the occurrence of vortices is higher, which confirms the conclusion in Sec. 4.6.1.

Based on all these observations, a new steady RANS model for simulations of the
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Figure 4.17: Distributions of the turbulent kinetic energy (TKE) in the simplified draft tube. The
deviation between RANS predictions and experimental data is attributed to the underprediction
of the TKE production and diffusion.

mean flow field in the draft tube cone is developed by modification of the TKE transport

equation as follows

ūi
∂k

∂xi
=

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ P − ε+ Pc −Dc (4.23)

where Pc and Dc are the coherent TKE production and diffusion due to the vortex rope

respectively. Using the concept of the coherent eddy viscosity νc, these extra terms can

be written as

Pc = νc

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(4.24)

Dc =
∂

∂xi

[
νc
∂k

∂xi

]
(4.25)

Therefore, Eq. (4.23) can be written as
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ūi
∂k

∂xi
=

∂

∂xi

[(
ν +

νt
σk

+ νc

)
∂k

∂xi

]
+ (νt + νc)

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

− ε (4.26)

where the only unknown parameter is the coherent eddy viscosity νc. Considering the

analogy with the eddy viscosity concept, this coherent eddy viscosity can be related to

a length and a velocity scale as

νc ∝ ℓcvc (4.27)

where ℓc and vc are the length and velocity scales of the unsteady coherent structures

forming within the shear layer in the draft tube. Note that Eq. (4.27) makes sense on

dimensional grounds. The velocity scale vc, itself, can be written as

vc = ℓcΩ (4.28)

where Ω represents the angular velocity of fluid particles in the vortices, therefore, it is

chosen to be the vorticity magnitude

Ω ≡
√

2ΩijΩij (4.29)

where Ωij is the mean rate-of-rotation tensor

Ωij =
1

2

(
∂ūi
∂xj

− ∂ūj
∂xi

)
(4.30)

Considering the simplest form, the coherent eddy viscosity can be written as

νc = ℓ2cΩ (4.31)

The closure problem still exists, but now it has changed to finding the length scale

ℓc. The length scale of the coherent structures in the vortex rope is related to the

thickness of the shear layer, and can be seen as the vortex rope diameter. However, no

general definition was found for the vortex rope diameter in the literature. There are
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attempts to extract the rope diameter by image processing [32], but they are limited

to the cavitating vortex rope (see Fig. 4.18) using the volume of the vapor (which is a

function of the cavitation number), and hence, cannot be used in general.

Figure 4.18: Extraction of the rope diameter by image processing in the PIV study of Iliescu et
al. [32].

In this study, a new definition for the vortex rope diameter is presented. Further

investigations of the unsteady 3D simulations presented in Sec. 4.4 revealed that the

helicity has a local maximum at the vortex center, then drops, moving away from the

vortex core. Helicity is a property of a moving fluid which represents the potential

for helical flow. It provides insight into the vorticity aligned with the fluid stream.

Mathematically, helicity for a fluid particle is defined by the dot product of the vorticity

and the velocity vectors

H = ~ω.~v = (∇× ~v) .~v (4.32)

With this observation, the diameter of the vortex rope is defined as the distance

from the vortex core by which the helicity drops by 90%. This is a general definition

valid for both cavitating and non-cavitating cases. Using unsteady 3D simulations and

this definition, the vortex rope diameter can be calculated directly. Figure 4.19 shows

the values of the vortex diameter, i.e., the vortical structure length scale ℓc, normalized

by the vortex core location (Rvc is the radial location of the vortex core) as a function

of streamwise location z normalized by the draft tube inlet radius Rref. The data in

Fig. 4.19 present results for several different times, locations, and operating conditions.

It can be seen that a curve can be fit through the data with an acceptable accuracy. This

curve represents the average value of the length scale of the unsteady coherent structures
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forming within the shear layer in the draft tube. From this curve, the length scale ℓc is

found to be

ℓc = Rvc exp

(
−0.6

z

Rref

)
(4.33)

where Rvc is the radial distance of the vortex core from the draft tube centerline, z is the

streamwise distance from the draft tube inlet, and Rref is the draft tube inlet radius. The

finding of Sec. 4.6.1 is very useful here because it was shown that although the vortex

rope cannot be modeled by steady axisymmetric simulations, the location of the vortex

core, i.e., Rvc is quite precisely defined by the location of maximum TKE production.

Therefore, Eq. (4.33) can be used in steady axisymmetric simulations to find the length

scale of vortical structures required by Eq. (4.31). Finally, the system of equations for

the newly developed axisymmetric model is closed. The newly developed k-ε RANS

model consists of Eq. (4.26) for the TKE transport where νc is obtained by Eq. (4.31),

(4.29), and (4.33). The transport equation for the turbulent dissipation rate ε remains

intact.

Figure 4.19: vortex rope diameter ℓc normalized by the vortex core location Rvc as a function of
normalized (by the draft tube inlet radius Rref) streamwise distance from the draft tube inlet.
An exponential line can be fit through these points with good precision (see Eq. (4.33)).

Steady axisymmetric simulations are performed for the simplified draft tube intro-

duced in Sec. 4.1 using the newly developed model combined with a two-layer zonal
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model for near wall treatment. All the details of the simulation setup is the same as in

Sec. 4.1 and Sec 4.2. Simulations are performed for two partial load cases, i.e., case C

and case D (see Table 3.2).

Figure 4.20 shows the profiles of axial velocity and turbulent kinetic energy in the

draft tube for case C corresponding to 91% of the BEP flow rate. Results are shown at

section S2 in the draft tube (see Fig. 3.11). It is seen that the present modified model

overcomes the underprediction of the axial velocity and turbulent kinetic energy near the

centerline of the draft tube, and a very good agreement is obtained with experimental

data. Specifically, both the level of the TKE and its behavior at the center of the draft

tube is modified (as much as 37% improvement at the centerline). Therefore, it is believed

that the new model is able to capture the physics of the vortex rope formation in an

average sense. Figure 4.21 shows the same results for case D with 70% of the BEP flow

rate. Again, results for the axial velocity are considerably improved in comparison to the

realizable k-ε model predictions. The new model better predicts the level of the axial

velocity at the center of the draft tube, as well as it shows considerable improvement in

prediction of the shear flow region. No experimental data for TKE are available for case

D, therefore, only simulations results are presented. It should be noted that all model

coefficients and constants are kept unchanged in predicting case C and D.

In order to further investigate the model, the turbulent kinetic energy budgets are

considered. The transport equation for turbulent kinetic energy for a steady flow in the

simplified draft tube can be written as

∂k

∂t
= − ∂

∂xi
(kūi) +D + P − ε = 0 (4.34)

where D, P , and ε are the total TKE diffusion (transport), total TKE production, and

total TKE dissipation. In the present model, P and D include both the effect of mean

and coherent production and diffusion respectively, i.e.,

P = (νt + νc)

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

(4.35)

D =
∂

∂xi

[(
ν +

νt
σk

+ νc

)
∂k

∂xi

]
(4.36)

whereas in a tradition RANS model, P and D only represent the mean production and

diffusion of the turbulent kinetic energy (νc = 0).
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Figure 4.20: Profiles of (a) axial velocity and (b) turbulent kinetic energy in the simplified draft
tube for case C, comparison of the present model and the realizable k-ε turbulence model.

Figure 4.22 shows radial distributions of the normalized TKE budgets at section S2

in the draft tube. The terms in the TKE transport equation are normalized by the

draft tube inlet velocity (Vref) and radius (Rref). Results of the standard k-ε model

and the present modified model are plotted in Fig. 4.22(a) and 4.22(b) respectively. In

both simulations, the dominant term around the shear layer (r ≃ 0.035 m) is the TKE

production which is in balance with the TKE dissipation. At the centerline, however, the

production becomes zero and mainly diffusion and dissipation are in balance. Comparing
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Figure 4.21: Profiles of (a) axial velocity and (b) turbulent kinetic energy in the simplified draft
tube for case C, comparison of the present model and the realizable k-ε turbulence model.

Fig. 4.22(a) and 4.22(b), it is clearly seen that the level of TKE production and diffusion

is predicted higher using the newly developed model, resulting in the improvements seen

in Fig. 4.20 and Fig. 4.21. Specifically, the newly developed model predicts 31% and

46% more TKE production and diffusion right at the shear layer.

In both cases, the “imbalance” budget (also known as the residual) is the net differ-

ence between four TKE budgets. In both cases, the imbalance budget is quite negligible

showing that the TKE transport equation is being solved with negligible numerical error.
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It should be noted that in Fig. 4.22 the near wall region is not shown to better present

the TKE budgets near the centerline. As one can imagine, the near-wall region is asso-

ciated with very high levels of production and dissipation due to high velocity gradients.

The TKE budgets for the near-wall region are similar for both cases of standard k-ε and

the modified model, and are shown in Fig. 4.23 in wall coordinates.

Figure 4.22: Radial distributions of the normalized TKE budgets (see Eq.(4.34)) in the draft
tube for (top) the present model and (bottom) its baseline model (The k-ε model).
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Figure 4.23: Near-wall distributions of the normalized TKE budgets in the draft tube.

4.7 Summary

The flow in the simplified FLINDT draft tube is studied in this chapter. Although not

including the effect of the change in cross section shape and the bending of the flow

path, this model can give very useful insights into the flow field inside the draft tube.

Specifically, the initial conical part of the draft tube where the vortex rope starts to

form is represented precisely. One of the main conclusions of this chapter is that the

RANS simulations cannot correctly predict the flow in the draft tube when the turbine is

operating under partial load and the vortex rope forms inside the draft tube. Attempts

are made in this chapter to improve these models to give a better prediction of the mean

flow. Nevertheless, hybrid RANS/LES models should be used when unsteady features

of the flow are of interest. The next chapter addresses this issue.



Chapter 5

Development of a New Partially-

Averaged Navier-Stokes Model

“What you seek is seeking you.” - Rumi

5.1 Introduction

It is shown in Chapter 4 that the simulation of swirling flow even in a simplified draft tube

is a challenging task, and accurate numerical calculations of the flow parameters require

a careful choice of turbulence closure method. In fact, a review of the literature reveals

that, in general, RANS turbulence models show inadequate performance in modeling

highly swirling flows. This has been investigated and shown to be true for a wide

range of RANS models including the standard k-ε [117], RNG k-ε [118], SST k-ω [39],

algebraic Reynolds stress model (ASM) [119], and Reynolds stress model (RSM) [120].

Furthermore, there is a great challenge in accurately predicting the unsteady features

of the flow, coherent structures, and turbulence statistics for a swirling flow with vortex

breakdown (as in the case of the draft tube) using unsteady version of RANS (URANS)

models, since these models tend to damp out the unsteadiness of the flow [42]. The time

scale of unsteadiness of the vortex breakdown is close to that of turbulent fluctuations

of energy carrying eddies, and therefore, this small scale unsteadiness is averaged off by

the URANS approach.

In the unsteady simulation framework, LES is a candidate for studying turbulent

swirling flows [121]. However, one of the major obstacles to the use of LES in complex
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confined industrial flows, such as swirling flow in cyclones and draft tubes, is the modeling

of the near-wall region [122] (see Chapter 2 for more details). Current LES modeling

approaches require that either the near-wall region be adequately resolved (using a DNS-

like grid near the wall which makes it inapplicable for industrial flows), or that an LES

wall-model (for example a two-layer model [57] or a dynamic wall model [58]) be used,

which to date has not provided accurate results in relatively complex flows [59, 60].

An alternative solution is to use hybrid URANS/LES models. Due to their relative

simplicity and robustness, these models have become one of the main modeling frame-

works for quantitatively accurate prediction of complex unsteady flows at high Reynolds

numbers. Various hybrid URANS/LES models have been used for unsteady draft tube

flow simulations including very large eddy simulation (VLES) [42], detached eddy simu-

lation (DES) [43], and scale-adaptive simulation (SAS) [45]. Most of these models have

shown relative improvement over the URANS models. However, detailed evaluation and

investigation of these models for various operating conditions of the hydroturbines are

seldom addressed.

The partially-averaged Navier-Stokes (PANS) model was developed by Girimaji [78]

as a continuous approach for hybrid URANS/LES simulations with seamless coupling be-

tween the URANS and LES regions. It is a bridging closure model that can be used with

any level of grid resolution between RANS and direct numerical simulation (DNS) [78].

The PANS model has been successfully used in several turbulent separated flow problems,

including flow past square [123] and circular [124] cylinders, flow over a backward facing

step [125], flow around a simplified vehicle model [126], and flow around a rudimentary

landing gear [127]. Nevertheless, it has been seldom applied in simulation of turbulent

confined flows. Specifically, to date, no previous report is found in the literature on

the development and application of the PANS model in simulation of turbulent confined

swirling flows. This chapter presents the details of the development of a new PANS

model, and its application in simulation of a benchmark test case, namely a swirling flow

through an abrupt expansion.

5.2 Model Formulation

The partially-averaged Navier-Stokes (PANS) [78] method is a bridging model between

RANS and DNS. Bridging models [128] aim to provide the best possible closure at

any given level of computational grid size, and improve accuracy when increasing the

resolution. They can be seen as an LES model with a cut-off wavenumber that can go
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continuously to zero, to become a RANS model. Therefore, bridging models including

PANS are of particular interest in moderate grids where the cut-off is in the wavenumber

range between RANS and LES. In these conditions PANS can provide better results

than RANS, since it resolves part of the flow, while RANS models the whole flow. The

PANS is advantageous in comparison with LES, since the grid does not need to be fine

enough to fulfill the requirement of LES, therefore less number of grid points and less

computational resources would be needed. Furthermore, in PANS modeling, a RANS

turbulence model is used for the near-wall region which would be much more effective

than a simple subgrid scale model as used in LES simulations. The seamless, continuous

nature of the PANS model is a result of the so-called “partial averaging” concept, which

corresponds to averaging (filtering) a portion of the fluctuating scales. The corresponding

arbitrary explicit or implicit filter is linear and constant preserving, and commutes with

temporal and spatial differentiation [78]. The partially-averaged Navier-Stokes equations

for a turbulent incompressible flow are [78]

∂ūi
∂xi

= 0 (5.1)

∂ūi
∂t

+
∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

− τij

)
(5.2)

where ūi and p̄ are the partially-averaged velocity and pressure respectively. The sub-

filter scale (SFS) stress tensor τij results from the partial-averaging of non-linear terms

and represents the effects of the unresolved motions on the resolved field. It is similar to

the Reynolds stress tensor resulting from the Reynolds-averaging in RANS approach, or

to the subgrid scale (SGS) stress tensor after the filtering in LES method. To close the

system of PANS equations, as in RANS and LES, a model is needed for the SFS stress

tensor τij relating the unresolved field stress and the resolved flow field. Girimaji [78]

proposed a generalized Boussinesq approximation for SFS stress tensor

τij = −2νuS̄ij +
2

3
kuδij (5.3)

where S̄ij is the resolved rate of strain tensor

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(5.4)
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νu denotes the PANS eddy viscosity (eddy viscosity of unresolved scales) and can be

obtained, as in RANS, by various turbulence closure models. In the original PANS

model [78], the eddy viscosity of unresolved scales νu is formulated based on the turbulent

kinetic energy ku and turbulent dissipation rate εu of unresolved scales as follows

νu = Cµ
k2u
εu

(5.5)

Therefore, in order to close the system of PANS equations, two transport equations

for the unresolved turbulent kinetic energy ku and its dissipation rate εu was derived by

Girimaji [78]. He derived the evolution equation for ku and εu by asking the following

question: “If the RANS two-equation model represents the closure for the fully averaged

kinetic energy and dissipation, what are the implied model equations for their partially

averaged counterparts?” In order to answer this question, Girimaji [78] introduced two

parameters fk and fε, being the unresolved-to-total ratios of turbulent kinetic energy

and turbulent dissipation rate respectively

fk =
ku
k

(5.6)

fε =
εu
ε

(5.7)

These parameters control the extent of averaging in PANS model. With fk = 1, for

example, all the turbulent kinetic energy of the flow field is unresolved (modeled) and

the PANS model would render a RANS solution. On the other hand, setting fk = 0 on a

sufficiently fine grid results in resolving all the turbulent kinetic energy and giving a DNS

solution asymptotically. With a value of fk between 0 and 1, the PANS model resolves

the turbulent structures partially and leaves the unresolved motions to be modeled.

In the PANS approach, the unresolved (partially-averaged) kinetic energy ku and

dissipation rate εu transport equations are obtained by substituting the total kinetic

energy k and dissipation rate ε in a parent RANS model using Eq. (5.6) and (5.7) as

shown in details by Girimaji [78] and Lakshmipathy and Girimaji [129]. Therefore, a

PANS model can be derived from any parent RANS model based on the ratio between

unresolved and total turbulence quantities. The original PANS model [78] was derived

based on the standard k-ε model, while Lakshmipathy and Girimaji [129] suggested

PANS equations based on the k-ω model. Later, a near-wall formulation of PANS was

proposed by Basara et al. [130] in the form of the PANS k-ε-ζ-f model, and a low
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Reynolds number variant of PANS was developed by Ma et al. [131] using the low-

Reynolds number k-ε model of Abe et al. [132].

In the present research study, a new version of PANS model based on the extended

k-ε turbulence model of Chen and Kim [133] is developed. Chen and Kim [133] proposed

a modified k-ε model in which two different time scales are employed for calculating the

rate of generation of ε. In their model, the rate of generation of ε is given by

C1ε
Pε

k
+ C3ε

P 2

k
(5.8)

The two time scales involved are the dissipation rate time scale k/ε and the production

time scale k/P . Since P is based on the mean strain rates, this modification enables the

ε equation to respond more strongly to changes in the mean strain. The new term (the

one including C3ε) may be viewed as the energy transfer rate from large to small scales

controlled by the production time scale. The net effect of these changes is to increase ε

when the mean strain is strong and to decrease it when the mean strain is weak. Chen

and Kim [133] showed improved predictions of the flow field for several turbulent flows

including plane and axisymmetric jets, turbulent boundary layers, flow over a backward

facing step, and confined swirling flow.

Later, Monson et al. [134] developed a low-Reynolds version of the extended k-ε

model of Chen and Kim [133] by combining this model with the low-Reynolds number

k-ε model of Lam and Bremhorst [135]. The final form of the low-Reynolds number

extended k-ε model of Chen and Kim [133] is as follows [134]

∂k

∂t
+ ūj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ P − ε (5.9)

∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ C1εf̃1

Pε

k
− C2εf̃2

ε2

k
+C3εf̃3

P 2

k
(5.10)

νt = Cµf̃µ
k2

ε
(5.11)

where

σk = 0.75 , σε = 1.15
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C1ε = 1.15 , C2ε = 1.9 , C3ε = 0.25

f̃1 = f̃3 = 1 + (0.05/f̃µ)
3 , f̃2 = 1− exp(−Re2T ) (5.12)

f̃µ = (1− exp(−0.0165Rey))
2 . (1 + 20.5/ReT )

ReT =
k2

νε
, Rey =

√
ky

ν

Equations (5.9) to (5.11) are used as the parent RANS equations for development

of the present PANS model. Derivation of the ku and εu transport equations for the

present PANS model is performed by multiplying the RANS equation for k (Eq. (5.9))

by fk and for ε (Eq. (5.10)) by fε, as shown in detail in Girimaji [78]. Without repeating

the details of the procedure, which can be found in Girimaji [78], Lakshmipathy and

Girimaji [129], and Ma et al. [131], the final form of the present PANS model is given by

∂ku
∂t

+ ūj
∂ku
∂xj

=
∂

∂xj

[(
ν +

νu
σku

)
∂ku
∂xj

]
+ Pu − εu (5.13)

∂εu
∂t

+ ūj
∂εu
∂xj

=
∂

∂xj

[(
ν +

νu
σεu

)
∂εu
∂xj

]
+ C∗

1

Puεu
ku

− C∗

2

ε2u
ku

+ C∗

3

P 2
u

ku
(5.14)

where Pu is the production of unresolved turbulent kinetic energy, and can be written

as

Pu = νu
∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
= fk

(
P − εu

fε

)
+ εu (5.15)

All model coefficients in Eq. (5.13) and (5.14) are functions of the original RANS

model coefficients [133], and fk and fε parameters as follows

C∗

1 = (C1εf̃1 + 2C3εf̃3)− 2C3εf̃3
fε
fk

(5.16)

C∗

2 = (C1εf̃1 + 2C3εf̃3) + (C2εf̃2 − C1εf̃1 − C3εf̃3)
fk
fε

− C3εf̃3
fε
fk

(5.17)

C∗

3 = C3εf̃3
fε
fk

(5.18)

σku = σk
f2k
fε

(5.19)
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σεu = σε
f2k
fε

(5.20)

The PANS eddy viscosity, which is used in Eq. (5.3), is defined by

νu = Cµf̃µ
k2u
εu

(5.21)

In order to close the present PANS system of equations, the unresolved-to-total ratios

of turbulent kinetic energy fk and turbulent dissipation rate fε are needed to be defined.

The parameter fε plays an important role when the dissipative scales are resolved, which

is most likely in a low Reynolds number flow. In a high Reynolds number flow, where

there is a clear separation between energy-carrying and dissipative scales, the dissipative

small scales are unlikely to be resolved, hence, εu = ε and fε = 1 [130, 136].

In the early stages of PANS application, the unresolved-to-total ratio of turbulent

kinetic energy fk was prescribed as a constant [78, 123, 124]. As the assumption of

constant fk is not reasonable, Girimaji and Abdol-Hamid [136] proposed a formula for

fk to become a variable parameter that depends upon the grid size and turbulence length

scale. They assumed that the smallest resolved length scale can be determined by the

local dissipation and local eddy viscosity similar to the Kolmogorov scale. Requiring

the grid size to be of the order of this “resolved-field Kolmogorov scale”, Girimaji and

Abdol-Hamid [136] derived the following formula for fk

fk =
1√
Cµ

(
∆

Λ

)2/3

(5.22)

where ∆ is the smallest grid dimension, and Λ = k3/2/ε is the turbulence length

scale [136]. Equation (5.22) has been widely used in PANS simulations by Basara et

al. [137], Basara et al. [130], and Han et al. [126], however, they considered ∆ to be

the geometric-average grid cell dimension, i.e., ∆ = (∆x∆y∆z)
1/3. This parameter fk

is implemented in the computational procedure as a dynamic parameter, changing at

each point at the end of every time step, and then it is used as a fixed value at the

same location during the next time step [137]. The formula in Eq. (5.22), however, does

not guarantee that the fk parameter remains bounded between 0 and 1 as required by

Eq. (5.6). Specifically, for situations where ∆ ∼ Λ, this equation, in this form, may

give fk values larger than 1. Furthermore, studying the turbulent channel and hump

flow, Davidson [138] found, very recently, that the actual ratio of modeled to total tur-

bulent kinetic energy ku/k is much smaller than fk from Eq. (5.22). The fk obtained
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from Eq. (5.22) gives much too large a turbulent viscosity which kills all resolved turbu-

lence [138].

In the present study, a new formulation for fk is developed which overcomes these

problems. Consider the turbulence energy spectrum E(κ) and a cut-off wavenumber κc,

as shown in Fig. 5.1. The cut-off wave number is the spectral filter size usually related

to the grid size by κc = π/∆ [139], and it is assumed constant or slowly variable in the

case of variable step size of the grid.

Figure 5.1: Turbulence energy spectrum showing resolved and unresolved parts of the turbulent
kinetic energy.

The total turbulent kinetic energy k can be obtained as

k =

∫
∞

0
E(κ)dκ (5.23)

while the turbulent kinetic energy associated with the unresolved (modeled) scales (the

shaded area in Fig. 5.1) is

ku =

∫
∞

κc

E(κ)dκ (5.24)

Consequently, the unresolved-to-total ratio of turbulent kinetic energy, i.e., fk can

be written as
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fk =
ku
k

= 1− kr
k

= 1−
∫ κc

0 E(κ)dκ∫
∞

0 E(κ)dκ
(5.25)

Therefore, fk can be analytically calculated using an energy spectrum equation. The

energy spectrum at very low wavenumbers (κ→ 0) behaves as [140]

E(κ) ≈ Csκ
s (5.26)

with Cs being a constant (the hypothesis of permanence of big eddies [140]). In the

inertial range, on the other hand, the Kolmogorov spectrum has to be recovered

E(κ) ≈ Ckε
2/3κ−5/3 (5.27)

In this study, a smooth approximation for the energy spectrum E(κ) inspired from

a von Kármán like spectrum [141] is used

E(κ) = Ckε
2/3κs



(
Ckε

2/3

Cs

) 2
5+3s

+ κ2/3



−

5+3s
2

(5.28)

The use of this spectrum, Eq. (5.28), valid in the entire range of wavenumbers evolving

from large to small eddies allows obtaining a more accurate result for the fk than the

one obtained by considering the Kolmogorov spectrum (E(κ) = Ckε
2/3κ−5/3) which is

valid only in the inertial range. It is shown later that Eq. (5.22) for fk implies the use of

the Kolmogorov spectrum, which is not valid for the entire range of wavenumbers. This

is specifically important when performing PANS simulations on coarse grids implying

that the cut-off wavenumber may happen to be located before the inertial zone.

Integration of the spectrum over all wavenumbers gives the total turbulent kinetic

energy

k =

∫
∞

0
E(κ)dκ =

1

1 + s

[
C

2
3(1+s)
s Ckε

2/3

] 3+3s
5+3s

(5.29)

Using Eq. (5.29), the constant Cs can be written as

Cs =




(
k(1 + s)

5+3s
3+3s

)

Ckε2/3




3+3s
2

(5.30)

Now, the parameter fk can be calculated as follows
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fk =
ku
k

= 1− kr
k

= 1−
∫ κc

0 E(κ)dκ

k

= 1−

∫ κc

0 Ckε
2/3κs

[(
Ckε

2/3

Cs

) 2
5+3s

+ κ2/3
]− 5+3s

2

dκ

1
1+s

[
C

2
3(1+s)
s Ckε2/3

] 3+3s
5+3s

(5.31)

Analytically calculating the integral in the numerator of Eq. (5.31), then substituting

for Cs from Eq. (5.30) and simplifying yields

fk = 1−


 κ

2/3
c(

Ckε2/3

k(1+s)

)
+ κ

2/3
c




3
2
(1+s)

(5.32)

Defining Λ = k3/2/ε and ∆ = π/κc as the turbulence and the grid length scales, the

fk parameter can be written as

fk = 1−




(
Λ
∆

)2/3
(

Ck

(1+s)π2/3

)
+
(
Λ
∆

)2/3




3
2
(1+s)

(5.33)

Two constants, namely Ck and s need to be defined. For Ck, the Kolmogorov con-

stant, a value of 1.5 is widely accepted [142].The question of permissible values for s,

however, is a controversial one. A complete discussion about the choice of s can be found

in Ref. [140]. The two most widely used values for s are 2 and 4 [140, 142], giving the

following relations for fk

fk = 1−
[ (

Λ
∆

)2/3

0.23 +
(
Λ
∆

)2/3

]4.5
(s = 2) (5.34)

fk = 1−
[ (

Λ
∆

)2/3

0.14 +
(
Λ
∆

)2/3

]7.5
(s = 4) (5.35)

In order to investigate the sensitivity of fk to the choice of s, both relations are

plotted against Λ/∆ in Fig. 5.2. It can be seen that the curves almost coincide, and the

deviation between Eq. (5.34) and (5.35) for fk is less than 3%. Therefore, Eq. (5.34) is

chosen and presented as the final form for fk.

For a coarse grid or very near the wall, where Λ ≪ ∆, fk → 1 (see Fig. 5.2) according



102

Figure 5.2: Variations of the fk parameter with respect to Λ/∆; comparison of Eq. (5.34),
Eq. (5.35), and Eq. (5.22).

to Eq. (5.34), and the model is identical to a RANS approach with all scales being

modeled. When the grid size is much smaller than the turbulence length scale, fk

decreases, and more and more of the turbulent kinetic energy can be resolved. The fk

value goes to zero asymptotically for Λ/∆ → ∞ as shown in Fig. 5.2. It is important to

note that Eq. (5.34) guarantees that the fk value remains between 0 and 1, a condition

required by the definition of fk, Eq. (5.6).

It is worth mentioning that if only the Kolmogorov energy spectrum (Eq. (5.27))

would be used to obtain the fk parameter, the result reads as

fk =
ku
k

=

∫
∞

κc
Ckε

2/3κ−5/3dκ

k
=

3

2
Ck
ε2/3

k
κ−2/3
c (5.36)

Using the above-mentioned definitions for the turbulence and the grid length scale,

∆ and Λ, fk can be written as

fk =
3

2
Ck

(
1

π

)2/3(∆

Λ

)2/3

≈ 1.05

(
∆

Λ

)2/3

(5.37)

which is similar (but with a different constant coefficient) to the formula proposed by

Girimaji and Abdol-Hamid [136] and Basara et al. [137] (Eq. (5.22)). As shown in

Fig. 5.2, the fk obtained from Eq. (5.22)) is considerably higher especially at lower Λ/∆

values. It reaches the value of one around Λ/∆ ≃ 6, and gives even higher values for
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lower values of Λ/∆.

As a summary, the present partially-averaged Navier-Stokes (PANS) model includes

Eq. (5.1) and (5.2), where the PANS eddy viscosity is obtained by Eq. (5.21), solving two

transport equations for unresolved turbulent kinetic energy Eq. (5.13), and unresolved

dissipation rate Eq. (5.14). Two important parameters in Eq. (5.13) and (5.14), i.e.,

fk and fε are obtained by Eq. (5.34) and fε = 1, respectively. In Eq. (5.34), ∆ =

(∆x∆y∆z)
1/3 is the grid length scale, and λ = k3/2/ε is the turbulence integral length

scale. The total turbulent kinetic energy required to calculate the turbulence length scale

is obtained in three steps. First, the total turbulent kinetic energy field is obtained from

a preliminary steady RANS simulation. This RANS simulation requires a considerably

smaller computational time, and is needed anyway to initialize transient simulations,

since starting an unsteady simulation without any initialization often results in severe

numerical instabilities. Second, the PANS simulations are performed for sufficiently long

time in order to obtain preliminary statistics of ku and kr using the “frozen” RANS

field for k. Finally, the last part of PANS simulations are performed in which the total

turbulent kinetic energy is calculated (k = ku + kr) and updated on a regular basis.

5.3 Validation Test Case: Swirling Flow Through an Abrupt

Expansion

5.3.1 Test Case Description and Numerical Methodology

The case of turbulent swirling flow through an abrupt expansion is chosen for validating

the present model. It is a complex flow possessing various dynamic phenomena including

vortex breakdown, recirculation, detachment and reattachment, and enhanced mixing.

Therefore, correctly predicting the flow behavior is quite challenging and special con-

siderations should be paid to choosing the turbulence closure model. Furthermore, the

swirling flow through a sudden expansion is of industrial interest since it resembles the

flow in several technical applications such as the gas turbine combustor.

The considered test case corresponds to the experimental study of Dellenback et

al. [143], for which several numerical investigations, using different turbulence models,

have been reported in the literature [121, 144, 44]. The experimental configuration

consists of water flow at an axisymmetric expansion (with the expansion ratio D2/D

equal to 1.94) as shown in Fig. 5.3. The axial and circumferential components of time-

averaged and root-mean-square (rms) velocity were measured by Dellenback et al. [143] at

several cross-sections downstream of the sudden expansion. In addition, measurements
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were performed for two sections upstream of the expansion which can be used as the

inflow boundary condition for the numerical simulations. Here, the inlet section of the

computational domain is put at two diameters upstream of the expansion (z/D = −2)

and the outlet boundary is place at z/D = 10. This computational domain is shown to

be sufficient for this flow problem [144]. The swirl number defined as [143]

S =

∫ R
0 UV r2dr

R
∫ R
0 U2rdr

(5.38)

is approximately 0.6, with R being the inlet radius, R = D/2, and V and U denoting the

time-averaged circumferential and axial velocities respectively. The Reynolds number

based on the inlet diameter D and the bulk velocity is 30,000.

Figure 5.3: Computational domain and coordinate system for the abrupt expansion.

At the inlet section, the radial profiles of axial and circumferential velocity compo-

nents are obtained from the measured data of Dellenback et al. [143] by interpolation.

Figure 5.4 shows the velocity profiles applied at the inlet of the computational domain.

The low axial velocity region near the center (r/R = 0) is formed due to the high cir-

cumferential velocity (swirl) transferring momentum away from the center. In this case,

with a high level of swirl, the turbulence is mainly generated after the expansion, and

regions of high turbulence production and shear layers created by the recirculating flow

are basically independent of the inflow conditions. Therefore, the flow is almost inde-

pendent of the initial turbulence conditions as shown in detail by Schlüter et al. [121].

Hence, no unsteadiness is added to the steady inlet conditions shown in Fig. 5.4. A

constant uniform inlet turbulence intensity of 10% is estimated from measurements of

Dellenback et al. [143]. No-slip conditions are applied at wall boundaries.

The main computational grid (with which all simulations are performed) consists

of 1,660,384 hexahedral cells. The grid is refined in areas of large variable gradients,

i.e., near-wall and centerline region, and near the expansion. The size of the grid is
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Figure 5.4: Velocity profiles at the inlet section of the abrupt expansion test case.

comparable to those used in previous LES and hybrid URANS/LES simulations of this

test case [121, 144, 44]. Furthermore, attention is paid to make sure that this grid is

within the range of the guidelines for hybrid URANS/LES grids [96] (see Sec. 2.5 for

details). To examine the grid sensitivity of the present PANS model, simulations are

also performed for a finer grid with 3,428,160 cells (results will be discussed later). The

computational time on the finer grid is about 2.3 times the computational time of the

main grid. The first cell center normal to the wall is placed at y+ ≃ 0.5 everywhere

in both grids. Figure 5.5 shows the mesh near the expansion section as well as a cross

section downstream of the expansion section for both the main and the fine grids. The

grid generation methodology was discussed in details in Sec. 2.5.

Unsteady simulations are carried out using the presently developed PANS model, as

well as the delayed DES (DDES) [86], and the URANS (SST k-ω) [70] turbulence models.

All unsteady simulations are initialized by a RANS steady solution. The dimensionless

time-step size (normalized by the inlet diameter and the bulk velocity) is taken as 0.0044.

The convergence criterion of the residuals for each time-step is set to three orders of

magnitude drop or maximum 30 sub-iterations. Unsteady simulations are carried out

for about 12 through-flow times (the time required by the mean flow to pass through the

domain once), corresponding to about 32,000 time-steps.
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Figure 5.5: Details of the computational grid in the case of the abrupt expansion: the main grid
(top), and the fine grid (bottom).

5.3.2 Results and Discussion

Figure 5.6 shows the instantaneous axial velocity contours on the meridian plane, ob-

tained using various turbulence closure approaches, namely URANS, DDES, and present

PANS models. The development of the reverse flow region at the center of the pipe, and

the strong shear layer between this region and the main flow is clearly seen in all fig-

ures. However, as shown in Fig. 5.6(a), the SST k-ω URANS model cannot capture the

self-induced unsteadiness of the vortex breakdown and gives steady symmetric results

(similar to RANS) due to steady symmetric boundary conditions. A detailed discussion

on this issue is given in Chapter 4. Applying hybrid URANS/LES models when the vor-

tex breakdown unsteadiness is resolved in an LES manner, detailed unsteady features

of the flow can be captured sufficiently resulting in non-symmetric unsteady results as

shown in Fig. 5.6(b) for the DDES and in Fig. 5.6(c) for the PANS model.

A snapshot of the flow is presented in Fig 5.7. The three-dimensional vortical struc-

tures are visualized by the non-dimensional iso-surfaces of the ∆-criterion. The ∆-

criterion was developed by Chong et al. [145] to identify the vortex. They proposed

that a vortex core is a region with complex eigenvalues of velocity gradient tensor ∂ui
∂xj

.
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Figure 5.6: Instantaneous axial velocity contours predicted by (a) URANS (SST k-ω), (b) DDES,
and (c) present PANS model.

As stated by Chong et al. [145], complex eigenvalues imply that the local streamline

pattern is closed or spiral in a reference frame moving with the point. This physically

can happen only if a vortex exists in the flow where fluid particles are rotating around

the vortex axis. Complex eigenvalues will occur when

∆ =

(
Q

3

)3

+

(
R

2

)2

> 0 (5.39)

where Q ≡ −1
2
∂ui
∂xj

∂uj

∂xi
and R ≡ Det

(
∂ui
∂xj

)
are the invariants of ∂ui

∂xj
[145].

It is seen in Fig. 5.7 that the flow is dominated by the precessing vortex core that

rotates around the geometrical axis of symmetry and its subsequent breakdown to small

coherent structures downstream of the expansion. Both the present PANS model and the

DDES model simulate the vortex core and its breakdown; however, the present model

is less dissipative and captures more detailed structures. This implies that the switch

between RANS and LES is more efficient in the present model leading to resolving of

more turbulent structures on the same grid.

Another important physical phenomenon in this flow is the separation and reattach-

ment of the flow with respect to the wall of the expansion section. As the flow enters the

wider section, it separates from the wall and a recirculating region is formed near the

wall of the wider pipe (see Fig. 5.6). The flow reattaches to the wall at some distance

downstream of the sudden expansion. This distance is called the reattachment length.

Dellenback et al. [143] measured the reattachment length of the flow and obtained a



108

Figure 5.7: Vortex breakdown visualized by non-dimensional iso-surfaces of the ∆-criterion
(∆/∆max = 10−6, where ∆max is the maximum of ∆ in the domain), obtained from (a) DDES
and (b) present PANS model.

value of zr/h = 2.5, where h is 1
2(D2 − D). In this study, the reattachment length is

obtained by calculating the skin friction coefficient. The reattachment length obtained

from using the present PANS model is zr/h = 2.54 which is in very good agreement

with the experimental result (less than 2% deviation), while a reattachment length of

zr/h = 2.90 is obtained by using the DDES model and results in 16% deviation. The SST

k-ω model underpredicts the reattachment length by 25%, giving a value of zr/h = 1.87.

Table 5.1 compares the reattachment length obtained using different turbulence models

with experimental data.

Table 5.1: Reattachment length zr/h.

Experiment [143] PANS DDES SST k-ω

2.50 2.54 2.90 1.87

Figure 5.8 shows radial distributions of the mean (time-averaged) and rms axial and

circumferential velocities on nine planes after the expansion, corresponding to the z/D

values of 0.25 to 8.0. All time-averaged results are computed by temporal averaging of

the results of 24,000 time-steps (with normalized time-step size of 0.0044) after setting
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the simulations to run for an initial 8,000 time-steps (initial transient). Results obtained

using the present model are compared to the experimental data of Dellenback et al. [143]

as well as those obtained using the DDES and URANS (SST k-ω) models. It can be seen

that the agreement between the predictions of the PANS model and experimental data is

very good. The DDES model also gives quite good results; however, some deviations are

seen around the reattachment point (0.75 ≤ z/D ≤ 2.0). Specifically, the axial velocity

is overpredicted by DDES just upstream of the reattachment point (z/D = 1.0), result-

ing in a 16% overprediction of the reattachment length as discussed above. Using the

present PANS model, an overall improvement is seen in results compared to the DDES

predictions with as much as 51% and 28% improvements in predictions of the rms axial

and circumferential velocities, respectively, near the centerline at z/D = 1.0. The SST

k-ω URANS model gives poor results and the shear layer between the central reverse

flow region and outer flow cannot be captured (see the mean axial velocity curves). Fur-

thermore, the level of swirl cannot be predicted reasonably, resulting in underpredictions

of the circumferential velocity as reported also by Gyllenram and Nilsson [44]. As dis-

cussed above, results of the SST k-ω model converge to a steady solution, hence, no rms

velocity associated with this model is plotted in Fig. 5.8.

To investigate the sensitivity of the numerical solutions to the grid size, in addition

to the main grid (with 1,660,384 cells) simulations are also carried out for a finer grid

(with 3,428,160 cells), and results are shown in Fig. 5.9. Profiles of the mean and rms

velocities obtained using PANS and DDES models on both grids are shown in Fig. 5.9 on

four planes with z/D values of 0.5, 1.0, 3.0, and 6.0. Both PANS and DDES results can

be slightly improved using a finer mesh, however, it can be seen that the grid dependence

is not a major issue.

The evolution of the fk parameter in PANS simulations is shown in Fig. 5.10 for

three axial cross sections, one, two, and four diameters downstream of the expansion.

At each section, three curves are compared, namely, the fk parameter calculated using

Eq. (5.34) (the present formula), the fk parameter calculated using Eq. (5.22) (the

previous formula), and the computed fk parameter based on the calculated ku and k

using Eq. (5.6). It is seen that the present fk parameter approaches 1 near the wall,

resulting in a more RANS-like simulation for this region. Near the centerline fk decreases,

and the present PANS model resolves more turbulent motions in an LES manner. Also

fk has lower values at the section z/D = 1.0 where the vortex breaks down and the flow

is very unsteady, therefore it needs to be resolved. Further downstream (z/D = 4.0)

where the flow reattaches to the wall, fk has higher values, although the model is still
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Figure 5.8: Radial distributions of axial mean velocity, axial rms velocity, tangential mean ve-
locity, and tangential rms velocity downstream of the expansion; comparison of (•) experimental
data [143], (——–) present PANS model, (- - - -) DDES model, and (− · − · −) SST k-ω model.
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Figure 5.9: Radial distributions of axial mean velocity, axial rms velocity, tangential mean ve-
locity, and tangential rms velocity downstream of the expansion; comparison of (•) experimental
data [143], (· · · · ·) present PANS model with main grid, (——–) present PANS model with fine
grid, (- - - -) DDES model with main grid, and (−·− ·−) DDES model with fine grid (main grid:
1,660,384 cells and fine grid: 3,428,160 cells).

in LES mode in most of the pipe, according to the Pope’s criterion [142]. Furthermore,

there is a good agreement between the present prescribed value of fk (Eq. (5.34)) and

the calculated value. It should be noted that the equality between the prescribed and

computed values of fk is exactly reached only in strict equilibrium flows; therefore, it

is not surprising to see deviations between these two values in this complex flow. The

previously used formula for fk (Eq. (5.22)), however, shows considerable overprediction

(also see Fig. 5.2). Higher values of fk calculated by Eq. (5.22) result in predicting larger

turbulent viscosities, damping more resolved turbulence, and showing slower change from

RANS to LES, as also observed by Kubacki et al. [146] and Davidson [138]. Here, this

effect is shown in Fig. 5.11 where predictions of PANS simulations using two different

formulas for fk, i.e., Eq. (5.22) and Eq. (5.34), are compared. All other parameters are

kept unchanged. It is seen that predictions are improved using the present model, while
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the previous model tends to return to the RANS solution. Specifically at downstream

sections (z/D = 3.0 and 6.0), the previous formulation considerably overpredicts the

value of fk resulting in underprediction of the rms velocities and returning the mean

velocity values to the RANS predictions.

Figure 5.10: Radial distributions of the unresolved-to-total ratio of turbulent kinetic energy fk in
the pipe; comparison between prescribed (using Eq. (5.34) (Present) and Eq. (5.22) (Previous))
and calculated (ku/k) values.

5.4 Summary

A new partially-averaged Navier-Stokes (PANS) turbulence model for predicting un-

steady turbulent swirling flow with vortex breakdown is developed. The present model

is formulated based on the extended k-ε turbulence model of Chen and Kim [133] by

employing the PANS methodology. The main distinctive feature of the present model is

to incorporate a newly developed relation for the unresolved-to-total turbulent kinetic

energy ratio fk, using partial integration of the complete turbulence energy spectrum.

The new expression overcomes the problem of overestimated fk and damped turbulent

motions where the grid cut-off wave number is below the inertial range. It is clearly

shown that the new formulation improves the predictions compared to the previously

used expression for fk. The present PANS model is validated by numerical simulations

of a benchmark test case, namely swirling flow through an abrupt expansion. Results

obtained using the present model are in very good agreement with experimental data,

while improvements are seen comparing to the results of DDES and URANS (SST k-ω)

models. Specifically, mean and rms axial and circumferential velocity profiles, as well

as the reattachment length are accurately predicted for the validation test case. The

application of the present PANS model in simulations of flow in the complete FLINDT

draft tube is presented in Chapter 6.
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Figure 5.11: Radial distributions of axial mean velocity, axial rms velocity, tangential mean ve-
locity, and tangential rms velocity downstream of the expansion; comparison of (•) experimental
data [143], (——–) PANS model using Eq. (5.34) (Present) for fk, and (- - - -) PANS model
using Eq. (5.22) (Previous) for fk.



Chapter 6

Simulations of the Flow in the

Complete FLINDT Draft Tube

“No one believes the CFD results except the one who performed the calculation, and

everyone believes the experimental results except the one who performed the experiment.”

- P. J. Roache, Computational Physicist

A new partially-averaged Navier-Stokes (PANS) model is developed in Chapter 5,

which can be used in unsteady simulations of turbulent swirling flows. This chapter

presents results obtained using this PANS model in simulations of flow in the complete

FLINDT draft tube for various operating conditions. Therefore, the present chapter

tries not only to validate the newly developed PANS model for a wide range of operating

conditions, but also to discuss and compare physical phenomena occurring under each

condition. In addition, the present PANS results are compared to the computational

results obtained using RANS models and the capability/incapability of these models for

various operating conditions are discussed.

6.1 The Complete FLINDT Draft Tube

The FLINDT draft tube was introduced in Chapter 3. It was discussed that the exact

details of the draft tube geometry were not available in open literature, which was one

of the challenges in the present research study. Therefore, a comprehensive investigation

of the previously published articles within the FLINDT project is performed, in order to

build a complete database on details of the draft tube geometry (as much as possible)
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and available experimental data. Using this database the three-dimensional FLINDT

draft tube geometry was rebuilt. Thus, this study can provide a publicly available test

case with all details required for a CFD simulation (see Sec. 3.3).

In the simulations of the complete draft tube presented in this chapter, all four cases

discussed in Sec. 3.4 are considered, thereby a wide range of operating conditions is

covered ranging from 110% (case A) to 70% (case D) of the BEP flow rate (see Table 3.2).

For case D, the circumferentially-averaged mean velocity components and turbulent

quantities (k and ε) just downstream of the trailing edge of runner blades are avail-

able [147]. Therefore, the inlet section for this case is chosen to be the surface swept by

the trailing edge of the runner (section S0 in Fig. 6.1). These data, however, are not

available for cases A to C; hence, a downstream section in the draft tube cone (Section

S1 in Fig. 6.1) is considered as the inlet section where the experimental data, including

axial and circumferential velocity components and turbulent kinetic energy profiles, are

available. Because of the relatively high uncertainty and low magnitude of the radial

velocity component in measurements at section S1, a linear variation of this component

is considered [11] at the inlet for cases A to C. As in the case of the simplified draft

tube, the inlet profiles for the dissipation rate are computed from the turbulent kinetic

energy profiles as ε = k3/2/l [12] for cases A to C, with the turbulence length scale being

l = 0.01R (R is the runner radius) [12].

Figure 6.1: Side view of the FLINDT draft tube showing the investigated sections and points
where unsteady pressure is monitored in this study.

Figure 6.2 illustrates profiles of velocity components applied at the inlet boundary,

i.e., section S1 for cases A to C and section S0 for case D. The evolution of the ax-

ial velocity component at the inlet for cases A to C (Fig. 6.2(a)) is characterized by
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Figure 6.2: Velocity profiles at the inlet section of the computational domain (section S1 in
Fig. 6.1 for cases A to C and section S0 in Fig. 6.1 for case D), (a) axial velocity profiles for cases
A to C, (b) circumferential velocity profiles for cases A to C, (c) axial, radial, and circumferential
velocity profiles for case D. Cases A to D correspond to 110%, 99%, 91%, and 70% of the flow
rate at the BEP, respectively.
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increasing the low velocity region at the center as turbine’s flow rate decreases. Also,

the circumferential velocity increases as the operating condition deviates from the BEP.

However, the direction of the circumferential velocity (i.e., the direction of the swirl) is

inverted for the operating points at the higher flow rates (Fig. 6.2(b)). This can be ex-

plained by considering the velocity triangles at the runner exit (see Sec. 1.2 for details).

Figure 6.2(c) shows the axial, radial, and circumferential velocity profiles at section S0

(the inlet section for case D). The circumferential velocity is quite high in this case re-

sulting in a high level of swirl (swirl number of 0.63) at the inlet to the draft tube. The

increase in velocity components near the band (see Fig. 6.2(c)) in this case is related to

the secondary flows in the blade channel at partial load with formation of inter-blade

vortices [148].

In order to overcome back-flows at the outlet, which could introduce numerical in-

stabilities, the outflow boundary is located farther downstream after the draft tube

discharge. Nevertheless, it has been shown [149] that the outlet boundary plays a rela-

tively less important role in this case. No-slip conditions are applied on all walls, while

the crown cone is defined as a rotating wall with an angular velocity equal to that of the

runner (for case D with S0 as the inlet section).

The main computational grid for cases A to C (where the computational domain

starts from section S1) consists of 1,324,220 cells and for case D (where the computational

domain starts from section S0) consists of 2,284,220 cells, which are quite moderate grid

sizes. This, in fact, is one of the advantages of the PANS model where the requirement of

the computational grid is not as rigid as for an LES model and a relatively coarser mesh

can be used (see Chapter 5 for more details). The grid is refined in areas of large variable

gradients, i.e., near-wall and centerline regions according to the guideline discussed in

detail in Sec. 2.5. To make sure that a grid-independent solution is obtained, simulations

are also performed for case A with a finer grid of 3,716,064 cells (results are discussed in

Sec.6.2). The first cell center normal to the wall is placed at y+ ≃ 2 everywhere in both

grids.

The governing transport equations (Eq.(5.1), (5.2), (5.13), and (5.14)) are numeri-

cally solved using the finite volume method in ANSYS-FLUENT 14.0 [150], where the

newly developed PANS model is implemented by means of a user-defined function (UDF).

Unsteady PANS simulations are initialized by a k-ε RANS steady solution. The time-

step size corresponds to one degree rotation of the runner (2.2 × 10−4 second) which
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is shown to be sufficient for hydroturbine applications [36, 45, 9]1. The convergence

criterion of the residuals for each time-step is set to 3 orders of magnitude drop or max-

imum 30 sub-iterations. In order to make sure that a quasi-steady condition is reached,

unsteady simulations are continued for a very long time. Specifically, simulations are

performed for 73,000 iterations corresponding to about 200 rotations of the runner, and

about 37 through-flow time (the time required by the mean flow to pass through the

domain once). All time-averaged parameters are computed by temporal averaging of

the results of 60,000 time-steps (13.2 seconds of operation of the runner corresponding

to 167 rotations) after setting the simulations to run for an initial 13,000 time-steps

(2.86 seconds of operation of the runner corresponding to 36 rotations), i.e., initial tran-

sient. On average, each time-step takes about 27 seconds (48 seconds for case D) for the

main grid and 82 seconds for the fine grid on a 16-processor Linux cluster. Simulations

are performed on a high performance computing cluster within the Pennsylvania State

University’s Research Computing and Cyber-infrastructure (RCC) unit.

6.2 Results and Discussion

6.2.1 Global Parameters

Two global parameters are considered for overall evaluation of the present numerical

simulations:

1. The pressure recovery coefficient defined as [11]

χ ≡ p6 − p2

1
2ρ
(

Q
A2

)2 (6.1)

and calculated between section S2 and S6 in Fig. 6.1. The pressure recovery coefficient

quantifies the overall hydraulic performance of a turbine draft tube in converting the

excess of kinetic energy at the runner outlet into static pressure as discussed in Sec.1.2.

2. The portion of the flow exiting the “left” channel (see Fig. 6.3 for the definition

of “left” and “right”).

Table 6.1 shows the draft tube pressure recovery coefficient obtained using the present

simulations in comparison with the experimental data [98]. Numerical predictions of

Mauri [11], who used the standard k-ε turbulence model, are also presented for compari-

1In fact, even larger time steps (up to three degrees of the runner revolution) are shown to be adequate,
however, a smaller time step is used to make sure that details of the vortex rope structure is being resolved
by the present model.
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Figure 6.3: Three-dimensional view of the complete FLINDT draft tube showing the components
of a draft tube, and “right” and “left” channels.

son (where available). It should be noted that in order to validate the present computa-

tional setup, RANS k-ε simulations are also performed and compared with predictions

of Mauri [11] for cases A to C where a nearly perfect match is obtained.

As expected, the highest pressure recovery is achieved at the BEP, while the pressure

recovery coefficient drops dramatically as conditions move away from the BEP. The k-

ε RANS model gives good results at the BEP, i.e., 3.2% difference with experimental

data. The draft tube flow at the BEP has very moderate level of swirl and is quite

“well-behaved”. No strong flow instability or vortex rope exist in the flow; therefore,

RANS closure models are able to give reasonable predictions. Even in case A, with 10%

more flow rate than the BEP, the flow instability is not high enough to form the vortex

rope and RANS simulations are able to predict the pressure recovery coefficient with

only 3.7% deviation from the experimental data values. It should be noted, however,

that in both cases A and B, predictions of the present PANS model are in very good

agreement with experimental data (only 2.6% and 0.6% difference in case A and B

respectively), while improvements are seen comparing to the k-ε RANS predictions.

Nevertheless, as shown previously by [38], the clear drawback of the RANS model occurs

under partial-load conditions, where the flow is highly unsteady and a strong helical

vortex rope forms inside the draft tube. The RANS closure models are unable to predict

the flow behavior in these conditions, while there still exists a good agreement between

the predictions of the PANS model, which resolves important vortical structures of the

flow, and experimental data. Specifically, deviation more than 13% is seen between
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experimental data and RANS simulations for case C, while PANS predictions show less

than 4% deviation. For case D with 70% of the BEP flow rate, no pressure recovery

calculation is found in [11], therefore, RANS simulations are performed which show more

than 58% overprediction. The prediction of the present PANS simulations deviates by

only 6% from experimental data for this case. Using the fine grid (with 3,716,064 cells),

results of the present PANS model show a slight improvement and only 1.4% difference

with experimental data is seen for case A. However, in view of the quite considerable

increase in the computation time (more than three times), these simulations cannot

be justified. Therefore, results obtained using the main grid (with 1,324,220 cells) are

considered to be “grid-independent” within a reasonable error.

Table 6.1: Pressure recovery coefficient χ in the draft tube (deviations from experimental data
are given in the parentheses).

Q/QBEP Exp. [11, 98] PANS RANS k-ε

Case A 110% 0.5192 0.5330 (2.6%) 0.5385 (3.7%)
Case B 99% 0.7584 0.7534 (0.6%) 0.7826 (3.2%)
Case C 91% 0.4937 0.5130 (3.9%) 0.5584 (13.1%)
Case D 70% 0.1161 0.1232 (6.0%) 0.1834 (58.1%)

Case A (fine mesh) 110% 0.5266 (1.4%)

Table 6.2 presents the portion of the flow rate through the “left” channel, where

the present PANS predictions are compared with experimental data as well as those

obtained by the k-ε RANS simulations [11]. Again, a fairly good agreement is seen

between present PANS predictions and experimental data, with PANS results for case

A with the fine grid being in excellent agreement with data. Another interesting point

is the uneven partition of the flow rate in the “left” and the “right” channels, which

becomes more distinct at lower flow rates. It is seen that at 70% flow rate, only 20% of

flow exits through the “right” channel. This is physically due to the interactions between

swirling flow entering the draft tube and secondary flows due to the curvature of the draft

tube elbow. A numerical test performed in this study indicates that reversing the swirl

direction at inlet (i.e., reversing the runner’s rotation direction) switches the portion of

flow going through each channel.

6.2.2 Mean Velocity and Wall Pressure Distributions

Figures 6.4 to 6.7 shows the time-averaged axial and circumferential velocity components

in the draft tube obtained from the present PANS simulations. For cases A to C, with
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Table 6.2: Flow portion (percentage of the total flow rate) through the “left” channel (see Fig. 6.3
for the definition of “left” and “right” channels).

Q/QBEP Exp. [11, 98] PANS RANS k-ε

Case A 110% 62 63 66
Case B 99% 51 59 63
Case C 91% 73 74 72
Case D 70% — 81 81

Case A (fine mesh) 110% 62

section S1 as the inlet, results are plotted at section S2 (Fig. 6.4 to 6.6). Case D has the

benefit of having the inlet at section S0, therefore, results can be plotted at two sections,

i.e., S1 and S2 (Fig. 6.7). Results are compared to the experimental data [11, 36, 12] as

well as those obtained from the k-ε RANS simulations. As shown by previous studies [42,

43] and discussed in Chapter 4, URANS models damped out the unsteadiness of the flow

and give steady results. Hence, time-averaged k-ε URANS results found to be the same

as the k-ε RANS steady results.

Comparing Fig. 6.4(a), 6.5(a), 6.6(a), 6.7(a), and 6.7(c) reveals that the axial velocity

component is characterized by increasing the low velocity region (stagnant region) at the

center of the draft tube as the turbine’s flow rate decreases. Furthermore, comparing

Fig. 6.7(a) and 6.7(c) shows that this region radially expands towards downstream in

the draft tube. Comparing the circumferential velocity shows that the minimum swirl

is associated with the BEP flow rate. Also, the swirl is damped moving downstream in

the draft tube (compare Fig. 6.7(b) and 6.7(d)).

As shown in Fig. 6.4, both RANS and PANS models correctly predict the axial and

circumferential velocities for case A. PANS, however, seems to capture more details of

the circumferential component at the center of the draft tube. For case B (Fig. 6.5),

the RANS k-ε model overpredicts the axial and circumferential velocities by as much as

19% and 35% respectively, while PANS predictions show excellent agreement with data.

The deficiency of the RANS model, as also shown by Vu et al. [38], appears mainly for

the partial load conditions. As illustrated in Fig. 6.6(a), RANS underpredicts the axial

velocity by as much as 64% near the centerline. Predictions can be improved by about

47% using the PANS model, showing quite good agreement with experimental data.

Predictions of both models for the circumferential velocity are nearly the same, showing

a relatively good agreement with data, namely 7% average deviation (see Fig. 6.6(b)).

The deviation between RANS simulation results and data becomes larger as the turbine’s
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discharge decreases (farther away from the BEP). As shown in Fig. 6.7(a) and 6.7(c), the

RANS k-ε model completely fails in correctly predicting the level of the axial velocity

near the centerline for case D. It predicts a large backflow region, and as a result,

overpredicts the level of the velocity outside of the shear flow region, while no reverse

flow is observed within experimental data. This class of models has been developed for

and calibrated by use of data from simple, steady flows. Therefore, they are insufficient

for predicting strong, unstable shear layers as in the case of the partial load draft tube

flow where a strong vortex is present. Predictions of the present PANS simulations show

considerable improvements. The level of the axial velocity is well calculated in the shear

layer, while better agreement is seen with experimental data near the centerline, although

there still exists a notable underprediction. Based on these results, it is concluded that

RANS models cannot correctly predict the flow behavior at partial load, where the low-

velocity inner region interacts with outer flow and the vortex rope forms. The precessing

vortex rope enhances the mixing and turbulence production and diffusion that cannot

be modeled using the RANS turbulence models. Using the PANS turbulence model, the

level of mixing and flow unsteadiness is better predicted and results are improved.

Figure 6.4: Radial distributions of time-averaged (a) axial and (b) circumferential velocity on
section S2 for case A; comparison of (•) experimental data, (——–) the present PANS model,
and (- - - -) the k-ε RANS model.

The wall static pressure is shown at four sections (Sections S2 to S5 in Fig. 6.1 and

Fig. 6.8) in Fig. 6.9 for three operating conditions, i.e., cases A to C. In the experimental

measurements [98], several pressure transducers were located peripherally at each section.

Figure 6.8 shows the top view of these four sections together with the pressure monitoring

points. The “inner” and “outer” sides of the draft tube’s elbow are specified to help
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Figure 6.5: Radial distributions of time-averaged (a) axial and (b) circumferential velocity on
section S2 for case B; comparison of (•) experimental data, (——–) the present PANS model,
and (- - - -) the k-ε RANS model.

Figure 6.6: Radial distributions of time-averaged (a) axial and (b) circumferential velocity on
section S2 for case C; comparison of (•) experimental data, (——–) the present PANS model,
and (- - - -) the k-ε RANS model.

understanding the directions in Fig. 6.8. As seen in Fig. 6.9, wall pressure is lower

near the “inner” side of the elbow (e.g., P5 to P8 at section S3) and is higher near the

“outer” side (e.g., P1, P2, P11, and P12 at section S3) for all operating conditions. This

is expected due to the flow streamline curvature forced by the elbow. Results obtained

from the PANS simulations are compared to the experimental data and the k-ε RANS

results of Mauri [11]. The global trend of the experimental data is predicted fairly

well by both models. Locally, however, the difference between RANS predictions and
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Figure 6.7: Radial distributions of time-averaged (a) axial velocity on section S1, (b) circumfer-
ential velocity on section S1, (c) axial velocity on section S2, and (d) circumferential velocity on
section S2 for case D; comparison of (•) experimental data, (——–) the present PANS model,
and (- - - -) the k-ε RANS model.

experimental data reaches 90% of the measured value. The RANS calculations clearly

overestimate the influence of elbow at the section S2, but the differences decrease in

the following sections. Predictions are significantly improved by using the PANS model,

specifically at the “outer” side of the elbow for section S2 (points P1, P2, P11, and P12),

and the “inner” side of the elbow for section S3 and S4 (points P4 to P8).

In order to compare simulation results and experimental data more quantitatively, de-

viations between RANS and PANS predictions and the experimental data are calculated

point by point and summarized in Table 6.3. For each case of A to C and each section of

S2 to S5, the maximum and the average percentage difference between calculated results

and experimental data is shown in Table 6.3. In case A, the difference between the k-ε
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Figure 6.8: Locations of pressure transducers at four sections (see Fig. 6.1) in the draft tube
where wall pressure is measured in experiments [11, 98].

RANS predictions and data can reach 49% (Section S4) with the average difference for

the four sections being 15%. The average difference between PANS predictions and data

is 9%, while improvements are seen for all sections. Similar results are seen for cases B

and C with 7% and 8% improvements of predictions on average using the PANS model.

Locally, a difference of 92% is seen between RANS results and data for case C while the

maximum difference of PANS results and data never exceeds 30%.

6.2.3 Unsteady Flow Field and Vortex Rope

Using the present unsteady PANS simulations, transient features of the draft tube flow

can be investigated. Figure 6.10 shows contours of instantaneous (for an arbitrary in-

stance in time) and time-averaged axial velocity in the draft tube for all operating con-

ditions. Contours are plotted in the symmetry plane, showing the draft tube cone and

elbow up to the pier. The evolution of the axial velocity from over-load to partial-load

can be clearly seen in Fig. 6.10. In case A, corresponding to 110% of the BEP flow rate,

axial velocity is quite high especially at the center of the draft tube. By decreasing the

flow rate towards cases B and C, a stagnant region starts to grow at the center of the

draft tube (the dark region in Fig. 6.10). This stagnant region is the result of the wake

of the crown cone as well as the swirling nature of the flow which tends to decrease the

momentum near the center and increase it near the wall. In case B, corresponding to 99%

of the BEP flow rate, the stagnant region is small and is limited to a very narrow region

close to the centerline of the draft tube. However, as the flow rate further decreases, the

stagnant region grows in size and expands in the draft tube. The shear layer forming

between this stagnant region and the highly swirling outer flow becomes unstable and

rolls up resulting in formation of a helical vortex which is known as the vortex rope.
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Table 6.3: The percentage difference (%) between wall pressure predictions of the k-ε RANS and the present PANS models, and the
experimental data.

Case A Case B Case C

Maximum Average Maximum Average Maximum Average

RANS PANS RANS PANS RANS PANS RANS PANS RANS PANS RANS PANS

Section S2 38 22 21 10 35 11 18 5 39 19 18 8
Section S3 33 23 17 11 28 19 13 5 92 30 23 15
Section S4 49 17 15 8 22 19 10 7 36 26 15 6
Section S5 14 10 7 6 12 8 7 4 16 15 11 7

Four sections average 34 18 15 9 24 14 12 5 46 22 17 9
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Figure 6.9: Distributions of wall pressure in the draft tube at four sections (see Fig. 6.1 and
Fig. 6.8 for locations of these sections and the monitored points) for cases A to C; comparison
of (•) experimental data, (——–) the present PANS model, and (- - - -) the k-ε RANS model.

The vortex rope rotates around the vortex core as well as precesses around the draft

tube centerline axis. As shown for case D, by further decreasing of the flow rate, a very

strong precessing vortex rope forms in the draft tube. Contours of the time-averaged

axial velocity in Fig. 6.10 show the mean extent of the stagnant region in the draft tube,

which increases when decreasing the flow rate.
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Figure 6.10: Contours of instantaneous (top row) and time-averaged (bottom row) axial velocity in the draft tube obtained by PANS
simulations.
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The details of the flow and pressure fields in the draft tube are illustrated in Fig. 6.11

for case D. Contours of instantaneous pressure and axial velocity for three arbitrary

instances in time, as well as contours of the mean axial velocity in the draft tube are

shown. In each figure, the average location of the vortex core in the draft tube cone

obtained from linear curve fitting of PIV data of Ciocan and Iliescu [99] is shown using

two black lines. In fact, these lines represent the 2D cross section of the conical surface

around which vortex rope wraps (for a detailed discussion see Sec 4.6). Figure 6.11(a)

shows low pressure discoid regions in the draft tube representing cross sections of the

helical vortex rope. In a vortex, pressure tends to have a local minimum on the axis of

a circulating flow when the centripetal force is balanced by the radial pressure gradient

(∂p/∂r = ρV 2
θ /r). It can be seen that there is an overall good agreement between the

locations of the vortex core predicted by the PANS simulations and those obtained from

PIV measurements [99]. This also can be seen in Fig. 6.11(b) where instantaneous axial

velocity contours are plotted at the same three time instants. Furthermore, Fig. 6.11(b)

shows the strong shear layer which is the cause of the formation of the vortex rope.

The direction of rotation of the vortex can be easily found out using Fig. 6.11(b) and

considering the direction of the axial velocity at each shear layer. Note that in Fig. 6.11,

downward is positive and upward (reverse flow) is negative. As discussed in Sec. 4.4,

the vortex rope forms due to the roll-up of the shear layer at the interface between the

low-velocity inner region created by the wake of the crown cone and highly swirling outer

flow. This low-velocity inner region (stagnant region) is clearly shown in Fig. 6.11(c)

by contours of the mean axial velocity. Again, it is interesting to note the agreement

between the average locations of the vortex cores from PIV data (black lines) and the

extent of the stagnant region predicted by the PANS simulations.

As shown in Fig. 6.12, the present PANS model captures a strong precessing vortex

rope in the draft tube for case D. The helical vortex is visualized in Fig. 6.12 at three

instants (corresponding to those shown in Fig. 6.11) by the isopressure surfaces corre-

sponding to p = −16, 000 Pa. The vortex rope has a very unsteady nature, and its shape

can dramatically change over time. The tail of the vortex rope may impact the inner

side of the elbow wall as seen in Fig. 6.12 at t = 6.6 s. This impact, called the “shock

phenomenon”, induces strong acoustic noise, pressure fluctuations, and even structural

vibrations [151]. The unsteady pressure forces arising from this will be discussed in

Sec. 6.2.4.
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Figure 6.11: Contours of (a) instantaneous pressure, (b) instantaneous axial velocity, and (c)
mean axial velocity in the draft tube at three arbitrary instances of time obtained using the
PANS simulations for case D. The black lines show the location of the vortex core obtained from
linear curve fitting of PIV data from Ciocan and Iliescu [99].

6.2.4 Pressure Fluctuations

Pressure fluctuations associated with formation of the vortex rope may result in severe

structural vibrations and damage to hydropower plant components including runner,

draft tube, and penstock. Here, to demonstrate fluctuations in the draft tube due to

the formation of a strong vortex rope in case D, wall pressure is monitored on several

points. Specifically, unsteady wall pressure is monitored for 12 points distributed along
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Figure 6.12: Vortex rope visualized by the isopressure surfaces at three instants of time.

the periphery of section S2 (see Fig. 6.8 and Fig. 6.1), located 0.24 m downstream of

the draft tube inlet, as well as for eight points along the draft tube elbow (see Fig. 6.1).

Figure 6.13(a) shows the evolution of wall pressure with time in the draft tube for point

P9 on section S2 in Fig. 6.8 during unsteady PANS simulations. Results are shown for

6 s (about 27,000 iterations and 75 rotations of the runner) after letting the simulations

run for an initial 4 seconds to make sure that a periodic unsteady (quasi-steady) state

is reached. Pressure fluctuations due to the vortex rope have large amplitude (prms =

2423 Pa) and low frequency (∼4 Hz) as shown in Fig. 6.13(a).

The dominant frequency of the pressure fluctuations can be obtained by performing

a fast Fourier transform (FFT) on the results. Figure 6.13(b) shows the normalized

frequency spectrum obtained from present PANS simulations. The vortex rope frequency

is found to be 0.308 of the runner rotation frequency. This is in very good agreement with

the value of 0.3 seen in experimental studies [36] (only 2.7% difference). Furthermore,

results of the present PANS simulations give better predictions in comparison with the

previous numerical studies of Ciocan et al. [36] who used the k-ε URANS model and

Zobeiri [9] who used three turbulence models, namely the k-ε, the SST k-ω, and the

scale adaptive simulation (SAS) models2. Table 6.4 shows the vortex rope frequency

predicted by the present PANS simulations in comparison with the previous numerical

simulations in the literature.

The amplitude of the pressure fluctuation, usually quantified by the root-mean-square

(rms) of the oscillation, defines the magnitude of the oscillatory force experienced by the

power plant components due to the rotation of the vortex rope. Therefore, it is equally

important to study the pressure fluctuation amplitude associated with formation of the

2Both simulations in Ref. [9] and [36] include the runner as part of the solution, therefore, the
unsteadiness in the draft tube is not only the result of the vortex rope self-induced instability, but also
the result of the unsteady velocity exerted by the rotation of the runner.
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Figure 6.13: (a) Wall pressure fluctuations and (b) their normalized frequency spectra obtained
from the present PANS simulations.

Table 6.4: Normalized vortex rope frequency f/frunner (deviations from experimental data are
given in the parentheses).

Experiment [36] PANS k-ε [36] k-ε [9] SST k-ω [9] SAS [9]

0.3 0.308 0.339 0.346 0.344 0.315
(% 2.7) (% 13) (% 15.3) (% 14.7) (% 5.1)

vortex rope. The pressure fluctuation amplitudes, based on the root-mean-square of the

pressure oscillations, are calculated for 12 points positioned at the periphery of section

S2 (Fig. 6.8), and plotted in Fig. 6.14 in comparison with experimental data [9]. The

normalized pressure fluctuation amplitude Cp in Fig. 6.14 is defined as

Cp =
prms

1
2ρV

2
inlet

(6.2)
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Figure 6.14: Distributions of wall pressure fluctuation amplitude in the draft tube at section S2;
comparison of experimental data [9] and present PANS simulations.

where Vinlet is the average velocity at the draft tube inlet.

It can be seen that the predictions of the PANS simulations closely follow the ex-

perimental data. The highest amplitude was found to be associated with point P5 in

the experiments which is predicted by only 6% difference by the present simulations.

Nevertheless, some overpredictions are seen for points with lower amplitude. The dis-

tributions of the pressure fluctuation amplitude clearly show the displacement of the

vortex center from the cone axis and the asymmetric nature of the flow even in the draft

tube cone. Thus, pressure fluctuations are not evenly distributed in the draft tube and,

therefore, it is important to detect regions in the draft tube with higher pressure fluctu-

ation amplitudes. For this purpose, wall pressure is monitored at several points located

farther downstream in the draft tube. Figure 6.15 shows the evolution of wall pressure

with time for eight points along the draft tube elbow (marked with squares and circles

in Fig. 6.1). The top row in Fig. 6.15 labeled “inner path” shows pressure fluctuations

for four points on sections S1, S2, S3, and S5 located in the “inner” side of the draft

tube elbow. The bottom row labeled with “outer path” shows pressure fluctuations at

the same sections but located on the “outer” side of the elbow. These eight points are

shown in Fig. 6.1 with four “inner” points marked with red squares and four “outer”

points marked with green circles. Results are shown for about 12 seconds after letting

the simulations run for an initial 4 seconds. It is seen that pressure fluctuations show

similar behavior for the “inner” and the “outer” points at section S1, which is due to
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the symmetry of the draft tube cone. It should be noted that, as expected, pressure

fluctuations for these two points show a 180 degree phase lag. However, this 180 degree

phase difference is not perfect for the all instants due to the effect of the elbow, which

can be felt even in the cone, as well as the vortex break-apart causing additional fluctu-

ations. The peak-to-peak amplitude of pressure fluctuations can reach 4,000 Pa in this

section. The asynchronous (with a 180 degree phase lag) nature of these fluctuations

exerts severe oscillatory forces on the draft tube wall. The long-term operation under

this condition may results in structural damage to the draft tube components [13] as

shown in Fig. 6.16. In cases where the draft tube is hung below the turbine and is not

integrated with the powerhouse structure, these forces may cause failure of the lateral

supports that brace the draft tube to the powerhouse [152]. Moving farther downstream

towards sections S2 and S3, pressure fluctuations show a very different behavior for the

“inner” and “outer” points. Specifically, the “inner” side of the elbow demonstrates very

severe pressure fluctuations with the peak-to-peak amplitude as high as 14,000 Pa. This

is mainly due to the interactions between the vortex rope, the secondary flows, and the

low pressure region in the “inner” side of the elbow. This is the region where the vortex

rope may impact the draft tube wall causing the “shock phenomenon” [151] as shown

in Fig. 6.12. The concrete erosion in the draft tube elbow [152] can be related to the

strong forces exerted by these phenomena.

Figure 6.15: Wall pressure fluctuations monitored on eight points in the draft tube (four points
on the “inner” side and four points on the “outer” side of the elbow) obtained by PANS unsteady
simulations.

Figure 6.17 shows prms for the eight monitored points in Fig. 6.15. It is seen that

prms in the inner side of the elbow increases to as much as 2.4 times the one in the

cone (from 1,397 Pa to 3,343 Pa) and then decreases farther downstream to 2,800 Pa,
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Figure 6.16: Crack in concrete at the draft tube door for a hydroturbine operated for extended
period of time at partial-load operating conditions. Source: Dörfler et al. [13].

while the “outer path” shows a relatively consistent behavior in terms of changing prms

(around 1,500 Pa). Therefore, it is concluded that for a draft tube of a hydroturbine

operating under partial load, where a strong vortex rope forms in the draft tube, the

most critical region where severe pressure fluctuations are felt is the inner side of the

draft tube elbow.

Figure 6.17: The root-mean-square of wall pressure fluctuations in the draft tube for the eight
monitored points in Fig. 6.15.
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6.3 Summary

Numerical simulations of the flow in the complete FLINDT draft tube are carried out in

this chapter. The test case, the FLINDT draft tube, is reconstructed by compiling data

from several published papers as discussed in Chapter 3. The PANS model developed

in Chapter 5 is used as the turbulence closure model. Four operating conditions ranging

from 70% to 110% of the BEP flow rate are considered, and several parameters including

the pressure recovery coefficient, the mean velocity, and the wall pressure obtained from

the present PANS simulations are compared with experimental data as well as those

obtained from the RANS k-ε simulations. It is shown that RANS and PANS both

can predict the flow behavior close to the BEP operating condition. However, RANS

results deviate considerably from the experimental data as the operating condition moves

away from the BEP. The pressure recovery factor predicted by the RANS k-ε model

shows more than 13% overprediction for case C with 91% of BEP flow rate, while axial

velocity is underpredicted by more than 64% near the centerline. In case D, with even

lower flow rate (70% of BEP), the k-ε model fails substantially in predicting mean axial

velocity while more than 58% difference is seen in prediction of the recovery factor.

Predictions can be improved dramatically using the present unsteady PANS simulations.

Specifically, the pressure recovery factor is predicted to less than 4% deviation and mean

axial velocity is calculated to less than 17% difference with experimental data for case

C. Even for case D, with a strong vortex rope forming in the draft tube and flow being

very unstable, the pressure recovery factor is predicted to only 6% difference with data,

while considerable improvement is seen in comparison to the RANS results, although still

notable underprediction is seen near the center of the draft tube. Furthermore, details of

the unsteady flow field, including the unstable shear layer and the stagnant region, and

the precessing helical vortex rope are captured using the unsteady PANS simulations.



Chapter 7

Mitigation of the Vortex Rope

Formation

“When you are studying any matter, or considering any philosophy, ask yourself only

what are the facts, and what is the truth that the facts bear out. Never let yourself be

diverted either by what you wish to believe, or what you think could have beneficent social

effects if it were believed; but look only, and solely, at what are the facts.”

- Bertrand Russell

7.1 Introduction

As discussed so far, the flow in the draft tube of a Francis turbine operating at par-

tial load is characterized by severe flow instabilities and the presence of a helical vortex

called the vortex rope. The self-induced flow instabilities and the vortex rope are respon-

sible for many undesirable operating characteristics including efficiency reduction, noise,

vibrations, variations in power output, vertical movement of the runner, and pressure

pulsations in the penstock [13]. These undesirable phenomena may occur individually or

in combination in hydroelectric plants. Therefore, control or elimination of the vortex

rope is necessary for improving hydropower plant efficiency and preventing structural

vibrations.

Different mechanisms have been proposed to control the draft tube vortex rope. Each

of these methods usually introduces additional hydraulic losses and efficiency reduction.

Furthermore, since there is not yet a general agreement on the main causes that lead to
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self-induced instabilities in a swirling flow, the practical solutions sometimes have mixed

results. These solutions are nearly as numerous as the number of field problems, as each

situation is unique. Bhan et al. [153] investigated several different cases of the draft tube

surge and noted that, “in general, no single solution can be guaranteed to eliminate draft

tube surge problems.”

Fins mounted on the draft tube wall have shown to be effective in reducing the ampli-

tude of the pressure fluctuations in many cases [154]. The idea is to decrease the swirl in

the draft tube cone. Nishi et al. [154] performed experimental investigations to clarify the

effects of fins on draft tube surge by analyzing wall pressure fluctuations. It was shown

that installation of fins to the draft tube wall can be useful to broaden the operating

range of a Francis turbine. However, usage of fins beyond the limit of their applicability

would be unfavorable due to their enhancement of instabilities. The disadvantages of

fins are significant losses in efficiency, being subjected to cavitation erosion, and struc-

tural vibrations [155]. Flow splitters are the fins that extend far enough into the flow

to touch each other [155]. They have similar applications and advantages/disadvantages

as fins. Both these methods target the effects of the pressure fluctuations, rather than

addressing the main cause.

Another approach used in controlling the draft tube vortex rope is to modify the

runner crown cone. Modifications can be applied in the form of the cone extension [156],

grooved runner cone [157], or combination of both [158]. These methods do not reduce

efficiency significantly as in the case of fins, however, they may cause large lateral forces

on the turbine shaft arising from pressure pulsations in the draft tube which act on the

runner cone extension. Nevertheless, these solutions are obviously acceptable only for a

narrow range of operating regimes. Outside this range, the non-adjustable geometrical

corrections have adverse effects.

One of the most widely used methods to reduce the amplitude of the pressure fluc-

tuations by the vortex rope is the admission of air into the runner or draft tube [159].

Air can be admitted in several locations including the spiral case, the annular chamber

between the wicket gates and the runner, the draft tube wall, the runner band, the run-

ner crown cone, or a snorkel attached to the runner cone [155, 159, 160, 161, 162]. Both

the location and the quantity of air have significant effects on the efficiency of the unit.

For high tailwater units, where the most severe pulsations occur [155], compressed air

must be injected into the draft tube since the pressure below the runner is more than

the atmospheric pressure. Therefore, the technical solution for the admission of air may

be costly [163].
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Susan-Resiga et al. [164] and Zhang et al. [37] stated the main requirements and

guidelines for a successful vortex rope control technique. They are obtained by assess-

ment of various previous methods for the draft tube surge [164], and analysis of the

numerical solutions [37]. These guidelines can be summarized as follows

• The control should address the cause of the vortex rope formation, rather than

just its effects such as pressure fluctuations and structural vibrations.

• The vortex rope should be controlled at the inlet of the draft tube.

• The method should focus on the stagnant region near the axis of the draft tube

rather than the swirl near the wall.

• The method should not affect the efficiency of the machine when operating at or

near the best efficiency point.

• The control technique should not result in considerable reduction in the machine

efficiency.

Analysis of the vortex rope formation performed in Sec. 4.4 and 6.2.3 confirmed that

the development of the vortex rope is associated with formation of a stagnant region

at the center of the draft tube. The shear layer resulting from high velocity gradients

between the wake or the stagnant region and highly swirling outer flow near the centerline

of the draft tube results in formation of the precessing vortex rope. This also has

been shown by previous experimental and numerical investigations [27, 37]. Therefore,

it can be concluded that a successful control technique should focus on dealing with

the stagnant flow region in the center of the draft tube. Adding an extension to the

runner crown cone [156] is one of the methods developed based on this principle. It

is a passive flow control by solid means, where the runner crown extension displaces a

portion of the stagnant flow region in the draft tube. This control technique leads to a

favorable effect. However, since the possible size of the crown cone is limited, it can only

partially eliminate the strong pressure fluctuations. It also decreases the flow area, and

thereby reduces the effect of the draft tube in recovering the pressure. In addition, since

this is a passive control method, it is not possible to adjust it for different operating

conditions. Alternative to solid means, one may introduce a fluid flow into the draft

tube to counteract the stagnant (and reversed) flow there. The air admission through

the runner crown tip is actually a weak form of this kind of control [159].

In this study a water jet injection is considered which should be far more effective due

to high momentum flux values. Furthermore, the technical solution for producing the
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water jet at the crown tip (nose cone) takes advantage of the hollow turbine shaft and

a high-pressure water supply from upstream of the turbine spiral case. Therefore, this

method does not alter the geometry of the turbine water passage, and does not use any

pumps, although for fine adjustments the use of a pump may be considered. This is a

so-called active control technique, as it can be adjusted for different operating conditions.

At the best efficiency point (BEP) or when machine is operating as a pump, the water

jet can be completely shut off, and since there are no appendages inside the draft tube,

the efficiency of the machine remains unchanged. This active control technique has been

first introduced by Susan-Resiga et al. [164] (although it was inferred independently in

this study by numerical simulations), and later experimentally investigated by Bosioc

et al. [165] and Tănasă et al. [166]. The main idea is to increase the momentum of

the stagnant flow in the centerline of the draft tube and to eliminate the high velocity

gradients, which result in formation of the shear layer and helical vortex rope. This is

investigated numerically in this chapter.

7.2 Methodology and Approach

In this section, the water jet injection technique for controlling the vortex rope is investi-

gated for the case of the simplified draft tube introduced in chapter 4 (see Fig. 7.1). The

operating points of interest are associated with case C and case D (see Table 3.2). They

have the same head coefficient of ψ=1.18 and different flow rate coefficients (discharge

coefficients) of ϕ=0.34 (case C) and 0.26 (case D), corresponding to 91% and 70% of the

BEP flow rate respectively. The same geometry and grid as in chapter 4 are used. Again,

both axisymmetric and three-dimensional grids are considered for a simplified, axisym-

metric draft tube geometry. The 2D axisymmetric computational domain corresponding

to the meridian half-plane is discretized by 120,000 structured grids, and the 3D compu-

tational domain consists of 2,028,000 structured cells. In both cases reduced-size grids

are used near the wall and the center of the draft tube.

The effect of an injected water jet is taken into account by modifying the inlet velocity

profiles. Since the present computational domain starts from a section downstream of

the runner outlet where the jet is injected, as shown in Fig. 7.2, the velocity profiles

induced at the inlet section by a jet issued from the runner crown cone located upstream

should be estimated. It is assumed that no extra pump is used for injecting water and

the control jet is supplied by a bypass line from upstream of the spiral case right after

the penstock, through the turbine shaft, to a nozzle attached to the runner crown cone.
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Figure 7.1: Computational domain for the simplified draft tube used in investigations of the
vortex rope control technique. Wall pressure is monitored at point PP, with results being shown
in Fig. 7.8.

As a result, the jet velocity depends on the turbine head which is constant for both

investigated cases

Vjet ≈
√

2g (H − hl) = ζ
√

2gH (7.1)

where hl represents the hydraulic losses through the penstock and bypass line and ζ is

the total loss coefficient of the tube supplying the jet. For penstock length less than three

times the head, the total hydraulic losses (including those of the trash rack, intake, and

bend losses) do not exceed 1% of the turbine head [167]. The total losses in the bypass

line including major losses in the pipeline system and minor losses within the nozzle,

bends, and a regulating valve are estimated to be around 10% of the turbine head H,

assuming a rational configuration for the bypass line. Therefore, the loss coefficient is

assumed to be ζ ≈
√
0.89 = 0.94. It should be noted that jet velocity exiting the nozzle

does not depend on the flow rate through the turbine, but only on the turbine head.

Therefore, the jet discharge (flow rate) can be adjusted by changing the jet radius (i.e.,

by using a needle-controlled nozzle) since

Qjet = πR2
jetVjet (7.2)
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Figure 7.2: Water jet injection from the runner crown cone into the draft tube.

Several jet radius values are considered in the range of 3 mm to 9 mm for case C and

10 mm to 17 mm for case D. Jet radii are chosen to be in the range of 0.1 to 0.5 times

the runner crown tip radius of 34 mm.

Knowing the radius and velocity of the jet injected from the runner crown cone, jet

velocity profiles at the inlet to the computational domain located 200 mm downstream

(see Fig. 7.2) are estimated based on the correlations presented by Rajaratnam [168].

As shown in Fig. 7.2, one can divide the jet flow into two distinct regions: a region of

undiminished mean velocity close to the nozzle, known as the jet potential core, and

a surrounding mixing layer developing radially along the axis. Farther downstream,

the mixing region penetrates towards the axis, and the potential core disappears. The

distance between the nozzle and the point where the potential core vanishes is known as

the jet core length, which is given by [168]

Lc ≈ 10.5Rjet (7.3)

Therefore, the longest jet core length corresponds to the maximum considered jet

radius (Rjet = 17 mm), which is Lc ≈ 178.5 mm. This length is still smaller than

the distance between the nozzle and the inlet section, i.e., Lj = 200 mm. Hence, the

jet flow is considered to be fully developed for all conditions investigated in this paper.
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Nevertheless, assuming that the jet is discharged from a “long” supply pipe, the potential

core would have disappeared and the exiting flow can be considered as fully developed.

The fully developed jet extends radially, following a linear correlation [168]

Rjet,z =

[
1.04 + 0.16

z

Rjet

]
Rjet (7.4)

Therefore the effective jet radius at the inlet section to the computational domain

(z = Lj) can be expressed as

Rjet,eff =

[
1.04 +

32

Rjet

]
Rjet

(
mm

)
(7.5)

The radial distribution of the axial jet effective velocity for a fully developed jet

(outside the potential core) is approximated by [168]

Vjet,eff(r)

Vm
=





1
2

[
1 + cos

(
πr

Rjet,eff

)]
r < Rjet,eff

0 r ≥ Rjet,eff

(7.6)

where Vm is the maximum velocity at the jet axis, which initially remains constant within

the potential core then decreases as [168]

Vm = Vjet
Lc

z
, (z ≥ Lc) (7.7)

The modified axial velocity profile, including the effects of jet injection, is obtained

by adding the jet effective velocity profile Vjet,eff to the main axial velocity without jet

injection. However, the effect of jet entrainment should also be taken into account, which

decreases the main axial velocity. Therefore, the modified axial velocity is approximated

by [168]

Vz,mod(r) = Vz(r)

[
1− (α− 1)

Qjet

Q

]
+ Vjet,eff(r) (7.8)

where Vz(r) is the axial velocity profile without jet injection and α is the ratio between

the jet flow rate calculated by integrating Eq.(7.6), and the correct jet flow rate (Eq.(7.2))

and is called the jet entrainment coefficient [168]

α =
1

2

(
1− 4

π2

)(
Vm
Vjet

)(
Rjet,eff

Rjet

)2

(7.9)
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Therefore, the total discharge associated with the modified axial velocity profile (Eq.(7.8))

is equal to Q+Qjet and is independent of the location of the nozzle.

Figure 7.3 compares the axial velocity profiles at the inlet section for cases C and D

with and without water jet injection. Velocity profiles at three different jet radius values

(3, 6, and 9 mm for case C, and 10, 15, and 17 mm for case D) are compared. It can

be seen that the main effect of the jet is to increase the velocity near the centerline and

reduce the wake of the crown cone. Away from the centerline the cases with jet injection

show a little lower axial velocity. As discussed above, this is due to the fact that the jet

entrains the surrounding fluid as it travels forward, which in turn slows down the outer

main flow [168]. All simulations are performed with the same circumferential velocity

profiles (identical to one without jet injection).

7.3 Results and Discussion

Steady axisymmetric simulations are performed in order to investigate the effects of jet

injection on stagnant region and draft tube performance. The two-equation standard k-ε

turbulence model with two-layer zonal model for near wall treatment is used in steady

simulations. Unsteady, 3D simulations are also performed with the objective of studying

water jet injection effects on the vortex rope formation and its unsteady behavior. As

shown in chapter 4, URANS models cannot predict the unsteady features of the vortex

rope correctly. Therefore, in this section, detached eddy simulation (DES) model [83] is

used for unsteady simulations.

7.3.1 Steady Axisymmetric Simulations

Figure 7.4 shows the streamline patterns in the meridian half-plane obtained from steady

axisymmetric simulations with different jet radius values for both case C and D. As

discussed in Sec. 4.2, the stagnant region at the center of the draft tube visualized by

streamlines represents the formation of the vortex rope. This region is developed as a

result of the flow deceleration along the axis and its size indicates the vortex rope size and

strength [12]. It is seen that applying the water jet increases the axial flow momentum

at the center and removes the stagnant and reverse flow region in both cases. This, in

practice, can result in vortex rope elimination and flow stability. Obviously larger jet

radii are associated with higher jet discharge and more reduction in the reverse flow

region. Furthermore, higher jet discharges are required for case D which is farther away
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Figure 7.3: Axial velocity profiles at the inlet section to the draft tube for (a) case C and (b)
case D, effect of jet injection.

from the BEP. The jet radius needed for fully eliminating the stagnant region in case

D (70% of the BEP flow rate) is almost twice the one in case C (91% of the BEP flow

rate).

The effect of water jet injection is also investigated quantitatively. Table 7.1 shows

the draft tube performance parameters, introduced in Sec 4.2. These parameters are

calculated between the inlet section and a section 1 m downstream (section A in Fig. 7.1)

in the draft tube. For case C, increasing the jet radius (i.e., the jet flow rate) increases the



146

Figure 7.4: Streamline patterns for the steady axisymmetric simulation of flow in the simplified
draft tube, effect of water jet injection (a) case C (91% of BEP flow rate), and (b) case D (70%
of BEP flow rate).

kinetic energy and pressure recovery coefficients monotonically. This results in improving

the kinetic energy-to-pressure conversion coefficient Ccr and reduction of the draft tube

losses Cl, hence the higher efficiency. For the highest flow rate, Rjet = 9 mm, Ccr

increases by 5%, while Cl decreases by 50%. Also it is interesting to note that even

the highest jet flow rate is still less than 1% of the draft tube flow rate for this case.

Case D, however, shows a different behavior due to a considerably larger stagnant region
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developed in the draft tube. Low jet discharges have negligible or even reverse effects

on the kinetic energy and pressure recovery coefficients. It can be seen that a water jet

with at least 15 mm radius is needed to obtain an improvement in the kinetic energy-

to-pressure conversion coefficient. For the highest flow rate, Rjet = 17 mm, Ccr shows

as much as 11% improvement, while Cl decreases by 14%.

Table 7.1: Draft tube performance parameters calculated between inlet section and a section 1
m downstream (Section A in Fig. 7.1). The effect of jet injection is studied by changing the jet
radius. Maximum possible jet radius, i.e., the runner crown tip radius, is 34 mm.

Case C
No jet Rjet=3 mm Rjet=6 mm Rjet=9 mm

Qjet/Q(%) 0 0.072 0.288 0.648
Ckr 0.7114 0.7114 0.7329 0.7668
Cpr 0.6465 0.6502 0.6922 0.7342
Ccr 0.9088 0.9140 0.9444 0.9575
Cl 0.0649 0.0612 0.0407 0.0326

Case D
No jet Rjet=10 mm Rjet=15 mm Rjet=17 mm

Qjet/Q(%) 0 1.044 2.349 3.017
Ckr 0.6747 0.6561 0.6435 0.6614
Cpr 0.3481 0.3358 0.3589 0.3801
Ccr 0.5159 0.5118 0.5577 0.5747
Cl 0.3266 0.3203 0.2846 0.2813

As discussed above, no extra pump is used in this method for injecting water. There-

fore, no input work to a pump, which should be considered as a loss, is needed. From the

exergy viewpoint, however, the water behind the dam has the potential to flow through

the turbine and generate electricity. So for power generation, the flux used for injection

is an exergy loss since it is bypassed and injected in the draft tube instead of being

allowed to flow through the turbine. Figure 7.5 shows these losses for case C and D.

For each case the draft tube hydraulic losses are the difference between total mechanical

energy of the flow in the draft tube (∆E = E(z) − E(0)), and the losses of exergy are

equal to the power associated with the water jet (Pjet = ρgHQjet). The total losses

are the summation of these two losses. All these parameters in Fig. 7.5 are normalized

by the turbine power (ρgHQ). As shown in Fig. 7.5(a) for case C (91% of BEP flow

rate), the draft tube hydraulic losses decreases with increasing jet radius due to elim-

ination of the vortex rope. On the other hand, the losses in exergy increase since the

flow rate (and, hence, power) associated with the water jet increases by increasing the

jet radius. As a result, the summation of these two, the total losses, reaches a minimum

value which occurs at around Rjet = 6.5 mm in this case. Total losses for this condition
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are about 13% lower than the case with no jet injection. Therefore, the optimum jet

radius, associated with the minimum total losses, is found to be 6.5 mm for case C with

91% of BEP flow rate. The fraction of water used for injection in this case is only about

0.3% of the total flow rate. Results for case D (70% of BEP flow rate) are shown in

Fig. 7.5(b). The maximum reduction, about 5%, in draft tube losses are achieved by

Rjet = 15 mm, while higher jet flow rates show inverse effects and result in increasing

losses. In order to eliminate the considerably larger stagnant region in case D, higher

jet flow rates are required, which in turn increase the losses in exergy significantly more

than case C, as shown in Fig. 7.5(b). Therefore, total losses in this case do not show a

minimum value, as in case C. It should be noted, however, that in the case with 70%

of BEP flow rate, a large vortex rope develops in the draft tube and severe pressure

fluctuations and structural vibrations occur. Therefore, the first priority in this case is

to suppress these fluctuations.

7.3.2 Unsteady 3D Simulations

Unsteady, three-dimensional simulations are performed using DES turbulence model and

Rjet = 6.5 mm and 10 mm for case C and case D respectively. As discussed above, Rjet

= 6.5 mm is associated with minimum total losses in draft tube for case C. No such

optimum jet radius is found for case D, therefore, the minimum jet radius required to

mitigate the vortex rope pressure fluctuations is chosen (Rjet = 10 mm). This value

corresponds to the jet-to-turbine flow rate of about 1% (see Table 7.1).

Figure 7.6 shows the instantaneous axial velocity contours on the meridian plane in

draft tube with and without jet injection. It is seen that for cases without jet injection a

relatively large region of reverse flow (dark region) develops within the center of the draft

tube. The stagnant region visualized by flow streamlines in Fig. 7.6 resembles the mean,

circumferentially-averaged location of these reverse flow regions in time. Obviously case

D has relatively larger reverse flow region due to lower flow rate and higher swirl resulting

in a stronger shear layer. In cases with water jet injection, axial momentum of flow is

increased at the center and this region is reduced in size considerably. The effectiveness

of this control technique becomes more obvious by comparing isopressure surfaces in

the draft tube. As discussed in Sec. 4.4, these surfaces can represent the vortex rope

in the draft tube. Figure 7.7 includes a sequence of figures showing the isopressure

surfaces in the draft tube as well as the axial velocity contours (the darker the color, the

higher the axial velocity) on the meridian plane. The sequence starts at the onset of jet

injection (top left) and continues to the final frame (bottom right) where the water jet is
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Figure 7.5: Losses in the draft tube for (a) case C and (b) case D as a function of the jet radius.

completely developed. The time between each frame is 0.083 s. It is seen that without

jet injection a relatively large vortex rope exists in the draft tube wrapped around a low

axial velocity (light color) region. When the water jet is applied, the axial velocity (flow

momentum) within the center of the draft tube increases (see the darker color at the

center), therefore, the velocity gradients within the free shear layer between the stagnant

region and outer flow decrease. This reduces the potential that the shear layer would

roll up and form the vortex rope; hence, the vortex strength is weakened and the rope

is practically eliminated. However, some low pressure pockets are still seen in the flow.
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Figure 7.6: Contours of instantaneous axial velocity showing the stagnant region and vortex rope
for (a) case C (91% of BEP flow rate), and (b) case D (70% of BEP flow rate) with and without
water jet injection.

The effect of water jet injection on the pressure fluctuations in the draft tube (point

PP in Fig. 7.1) is investigated by unsteady simulations of case D and results are shown

in Fig. 7.8. As discussed previously in Sec. 4.4, vortex rope formation results in low

frequency, high amplitude pressure fluctuations. By applying a water jet one can elimi-

nate the vortex rope and, thus, significantly reduce the pressure fluctuations amplitude

as seen in Fig. 7.8. The peak-to-peak amplitude of pressure fluctuations decreases from

about 9,000 Pa to about 3,000 Pa in this case. Furthermore, the dominant frequency of

fluctuations is altered. It is specifically important to move the dominant frequency of the

pressure fluctuations far away from the natural frequency of the power-plant structure.
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Figure 7.7: Time evolution of the controlled draft tube flow by water jet injection showing the
reduction and elimination of the vortex rope (top left to bottom right).

7.4 Summary

Numerical simulations and investigation of a method for mitigation of the vortex rope

formation in draft tubes are discussed in this chapter. As shown in the previous chapters,

formation of the vortex rope is associated with a large stagnant region at the center of

the draft tube. Therefore, it is concluded that a successful control technique should focus

on the elimination of this region. In practice, this can be performed by axially injecting

a small fraction (few percent of the total flow rate) of water into the draft tube. The

water jet is supplied from the high pressure flow upstream of the turbine spiral case by a

bypass line; thus, no extra pump is needed in this method. It is shown that this method

is very effective in elimination of the stagnant region in a simplified draft tube operating

at two part-load conditions, i.e., at 91% and 70% of the BEP flow rate. This results in

improvement of the draft tube performance and reduction of hydraulic losses. The loss

coefficient is reduced by as much as 50% for the case with 91% of BEP flow rate and

14% for the case with 70% of BEP flow rate. Unsteady 3D simulations show that the jet

increases the axial momentum of flow at the center of the draft tube and decreases the

wake of the crown cone, and thereby decreases the shear at the interface of the stagnant

region and high velocity outer flow, which ultimately results in mitigation of the vortex

rope. Furthermore, reduction (by about 1/3 in the case with 70% of BEP flow rate) of

strong pressure fluctuations leads to reliable operation of the turbine.
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Figure 7.8: Unsteady pressure on the draft tube wall for case D, effect of water jet injection.



Chapter 8

Summary and Conclusions

“If you can’t explain it simply, you don’t understand it well enough.” - Albert Einstein

8.1 Highlights

The core contributions and findings of the present study are as follows

• Simulation and analysis of the vortex rope formation is performed, and the physics

behind it is understood.

• High fidelity numerical simulations are carried out using a wide range of turbulence

models in the framework of RANS, URANS, and hybrid RANS/LES modeling.

• Three widely used RANS turbulence models, namely the standard and realizable

k-ε, and the SST k-ω model are shown to be insufficient for modeling the vortex

rope behavior, specially at lower flow rates.

• Turbulent kinetic energy production and diffusion is underpredicted by the above-

mentioned RANS models when a strong vortex rope is formed in the draft tube.

• A new RANS turbulence model including the extra production and diffusion of the

turbulent kinetic energy is developed, that can successfully model the mean flow

in the draft tube when the vortex rope is formed.

• URANS models are generally not capable of resolving the self-induced unsteadiness

associated with the vortex rope, therefore, hybrid RANS/LES models should be

used.
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• A new hybrid RANS/LES model in the framework of partially-averaged Navier-

Stokes (PANS) modeling is developed for the unsteady simulation of the vortex

rope.

• The new PANS model uses a new relation for the unresolved-to-total turbulent

kinetic energy ratio developed in this work for the first time.

• The newly developed PANS model is validated against experimental data in a

benchmark test case, namely swirling flow through a sudden expansion, and is

shown to give accurate results.

• The new PANS model is used in unsteady simulations of the flow in a complete

draft tube (FLINDT draft tube) for four operating conditions ranging from 70%

to 110% of the BEP flow rate.

• The geometry of the FLINDT draft tube is regenerated based on data from several

resources and is presented for the first time in this study.

• The PANS model developed in this study successfully predicts various draft tube

flow parameters including the pressure recovery factor, mean velocity and pressure

profiles, vortex rope frequency, and unsteady pressure fluctuations.

• Investigations of the wall unsteady pressure reveals that the critical region in the

draft tube with the highest pressure fluctuations is located at the inner side of the

elbow.

• The formation of the vortex rope is shown to be attributed to the formation of

a stagnant region at the center of the draft tube; therefore, it is proposed that a

vortex rope control technique should target this region.

• Centrally injecting water to the draft tube inlet is shown to be an effective method

in mitigating the vortex rope formation, and in reducing hydraulic losses and pres-

sure fluctuations due to the formation of the vortex rope.

8.2 Summary

Simulation, physical understanding, and analysis of vortex rope formation in Francis

turbine draft tubes were addressed in this study using high fidelity CFD. The vortex

rope is a complex three-dimensional unsteady turbulent phenomenon occurring when
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a hydraulic turbine operates under off-design conditions. Previous experimental and

numerical studies reviewed in this dissertation have shown that formation of the vortex

rope is associated with severe pressure fluctuations and even structural vibrations. The

vortex rope is recognized as the main cause of flow instabilities, draft tube surge, and

efficiency drop, affecting the performance of the whole hydropower plant. Therefore, its

understanding and mitigation are of industrial interest. Investigations of vortex rope

formation and mitigation were carried out using high fidelity numerical simulations in

the present study. Specifically a vortex rope control technique, which includes injection

of water from the crown tip (nose cone) to the inlet of the draft tube, was studied.

Furthermore, detailed features of the vortex rope formation are shown to be difficult

to predict with numerical computations, which are still widely based on the traditional

RANS turbulence models. The turbulence models’ limitations, however, are not well

known. Hence, another objective of the present work was to understand the fundamental

processes governing the formation of a vortex rope and investigating, understanding, and

defining the predictive capability of the models and developing turbulence models for

better prediction of vortex rope behavior.

A step-by-step systematic approach was considered in this study starting from the

simplest and advancing towards the most complicated flow structure. Firstly, simulations

and analysis of vortex rope formation in a simplified draft tube of a model Francis turbine

operating at partial load were performed. Steady and unsteady simulations were then

carried out using 2D axisymmetric and 3D computational domains for an axisymmetric

geometry. Several turbulence models were used, namely standard and realizable k-ε,

SST k-ω, and DES. In the case of the simplified draft tube, two part-load operating

conditions with the same head and different flow rates were considered. The flow rates

for these two operating points correspond to 91% of the flow rate at best efficiency

point (case C) and 70% of the flow rate at best efficiency point (case D). Although

they cannot capture the vortex rope, steady, 2D axisymmetric simulations can predict

the occurrence and development of vortex breakdown with a central stagnant region

in the draft tube. It was shown that, moving farther from the best efficiency point,

the size of this stagnant region increases, which results in flow blockage and reduction

of the pressure recovery coefficient. The kinetic energy recovery coefficient, pressure

recovery coefficient, and kinetic energy-to-pressure conversion coefficient are reduced by

5%, 46%, and 43%, respectively, by decreasing the flow rate from case C to case D, while

the loss coefficient becomes five times larger. It was shown that steady simulations for

3D and 2D axisymmetric flow geometries give identical results, underpredicting axial
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velocity and turbulent kinetic energy near the center of the draft tube by at least 14%

and 40% for case C, respectively. Farther from the BEP, i.e., for case D, this deviation

increases considerably. No considerable improvement in predictions was seen applying

different turbulence models. Unsteady, three-dimensional simulations were performed in

the case of the simplified draft tube in order to capture the vortex rope. It was seen

that the unsteadiness of the vortex rope cannot be modeled by the URANS approach

resulting in steady, symmetric solutions, while applying hybrid RANS/LES models (DES

in this case), vortex rope unsteady behavior can be captured sufficiently. Using the DES

turbulence model, the overall shape of the vortex rope agrees well with the experimental

visualizations for the cases considered. The vortex rope frequency was found to be about

0.318 of the runner rotation frequency which shows only 6% difference compared to the

experimental data.

Attention was then focused on developing a new steady RANS turbulence model in

order to correctly predict the mean flow field in a draft tube operating under partial load

using an axisymmetric model. The goal was to provide designers with a simulation tool (a

new k-ε RANS model) that does not take too much time and storage to run, but lets them

evaluate the draft tube performance. It was argued in detail that steady RANS models

underpredict the turbulent kinetic energy (TKE) production and diffusion in regions

of the flow where the vortex rope forms. Therefore, a new model taking into account

the extra production and diffusion of TKE due to coherent structures was developed.

Predictions of this new RANS model are in much closer agreement with the experimental

data compared to those using the traditional RANS models.

Nevertheless, as discussed above, hybrid RANS/LES models should be used when

unsteady features of the draft tube flow, such as pressure fluctuations and vortex rope

frequency, are of interest. Considering this requirement, a new hybrid RANS/LES model

in the framework of partially-averaged Navier-Stokes (PANS) modeling was developed.

This is one the main contributions of the present study. The present model was formu-

lated based on the extended k-ε turbulence model of Chen and Kim [133] by employing

the PANS methodology. The main distinctive feature of the present model is to incor-

porate a newly developed relation for the unresolved-to-total turbulent kinetic energy

ratio fk, using partial integration of the complete turbulence energy spectrum. The new

expression overcomes the problem of overestimating fk and damping turbulent motions

where the grid cut-off wave number is below the inertial range. It was clearly shown that

the new formulation improves the predictions compared to the previously used expres-

sion for fk. The case of a turbulent swirling flow through a sudden expansion was used



157

to validate the results of this model. Predictions of the present PANS model were in

very good agreement with experimental data, while improvements were seen comparing

to the results of DDES and URANS (SST k-ω) models. Specifically, mean and rms axial

and circumferential velocity profiles, as well as the reattachment length were accurately

predicted. Although the DDES model also performs quite well, it overpredicts the ve-

locity values around the reattachment point resulting in a 16% overprediction of the

reattachment length. The present model predicts the reattachment length by only 1.6%

error.

As the ultimate case, this newly developed PANS model was used in unsteady numer-

ical simulations of flow in a complex elbow draft tube. The draft tube of a model Francis

turbine investigated in the FLINDT project [29] was chosen for numerical studies due to

the availability of accurate and detailed measured data. The geometry of the draft tube,

however, was not available. Therefore, the FLINDT draft tube was reconstructed in this

study compiling data from several previously published papers. To the best of author’s

knowledge, this is the first attempt at regenerating the FLINDT draft tube and making

it available in the open literature, hence, it should be considered as one of the important

contributions of this research study. In the case of the complete FLINDT draft tube, four

operating conditions ranging from 110% to 70% of the BEP flow rate were considered

and several parameters including the pressure recovery coefficient, mean velocity, and

wall pressure obtained from the present PANS simulations were compared with those

from the experimental measurements as well as those obtained from the RANS k-ε sim-

ulations. It was shown that RANS and PANS both can predict the flow behavior close

to the BEP operating condition. However, RANS results deviate considerably from the

experimental data as the operating condition moves away from the BEP. The pressure

recovery factor predicted by the RANS k-ε model showed more than 13% overprediction

for case C with 91% of BEP flow rate, while axial velocity was underpredicted by more

than 64% near the centerline. In case D, with even lower flow rate (70% of BEP), the

k-ε model substantially failed in predicting mean axial velocity while more than 58%

difference was seen in the prediction of the recovery factor. Predictions can be improved

dramatically using the present unsteady PANS simulations. Specifically, the pressure

recovery factor was predicted to less than 4% deviation and mean axial velocity was cal-

culated to less than 17% difference compared to experimental data for case C. Even for

case D, with a strong vortex rope forming in the draft tube and flow being very unstable,

the pressure recovery factor was predicted to only 6% difference compared to data, while

considerable improvement was seen in comparison to the RANS results, although still
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notable underprediction was seen near the center of the draft tube. Furthermore, details

of the unsteady flow field, including the unstable shear layer, the stagnant region, and

the precessing helical vortex rope were captured using the unsteady PANS simulations.

The vortex rope frequency was obtained by monitoring wall pressure fluctuations, and

it was found to be about 0.308 of the runner rotation frequency which shows only 2.7%

difference compared to the experimental data. It was shown that the formation of the

vortex rope under partial load conditions results in severe pressure fluctuations with

the peak-to-peak amplitude as high as 14,000 Pa. The oscillatory forces exerted on the

draft tube by these fluctuations may result in structural damage. Investigations of the

unsteady wall pressure revealed that the critical region in the draft tube with highest

pressure fluctuations is located at the inner side of the elbow.

Using high fidelity numerical simulations results, the physical mechanism causing

the formation of a vortex rope was analyzed. It was confirmed in this study that the

development of the vortex rope is associated with formation of a low-velocity region at

the center of the draft tube. The vortex rope forms at the shear layer between this

low-velocity inner region and the swirling outer flow. Therefore, a vortex rope control

technique was numerically studied, in which a small fraction of water is bypassed from

upstream of the turbine spiral case and axially injected through the runner crown cone

into the draft tube. The main benefits of this method are that no extra pump is needed for

injecting water, and the jet flow rate can be adjusted for different operating conditions

(active control). In the present study, simulations were performed in the case of the

simplified draft tube for two operating conditions at partial load (cases C and D). Both

steady (using a 2D axisymmetric grid) and unsteady (using a 3D grid) simulations are

carried out. It was shown that applying a water jet increases the axial flow momentum

at the center and removes the stagnant region in both cases, while the loss coefficient

is reduced by as much as 50% for case C and 14% for case D. Several jet radii were

investigated considering the total losses including draft tube hydraulic losses and the

losses in exergy. An optimum jet radius corresponding to minimum total loss was found

for case C. This optimized jet decreases the total losses by 13% for case C in comparison

with the no jet condition. The fraction of water used for the optimum jet was less than

0.3% of the turbine discharge. Monitoring the unsteady wall pressure for case D showed

that the amplitude of pressure fluctuations in the draft tube is reduced by about 1/3 by

applying a water jet which eliminates the vortex rope and stabilizes the flow.

As a closing comment, the primary merit of the present study is to demonstrate

how a complex, industrially interesting, and real-life problem can be studied using a
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systematic approach. In this approach, a complementary knowledge of fluid dynamics,

turbulence physics and modeling, and numerical simulation was used to investigate the

problem. The insight gained from these detailed fundamental investigations were shown

to be beneficial in mitigating the problem of the vortex rope, and that is the ultimate

goal from an engineering perspective.

8.3 Recommendations for Future Studies

The present study tries to address several issues related to vortex rope formation in

draft tubes. In the course of this study, however, it was found that a number of other

issues deserve additional investigation. In this study, only cavitation-free operating con-

ditions are considered, and therefore, single-phase numerical simulations of the vortex

rope are performed. To continue this work, multiphase simulations incorporating the

effects of cavitation should be considered. These simulations should be able to show

the dependence of the vortex rope frequency and pressure fluctuation amplitude on the

volume of the vapor generated due to the cavitation. Numerical simulation of multi-

phase flows, however, poses far greater difficulties than that of single-phase flows due to

interfaces between phases, and large or discontinuous property variations across these

interfaces. Particularly, application of hybrid RANS/LES turbulence models in the case

of a multiphase flow is challenging.

Another research orientation should concern further investigation and application

of the partially-averaged Navier-Stokes (PANS) model developed in this study. The

present PANS model is developed as a generic hybrid RANS/LES model; therefore,

its application is not limited to the draft tube or hydroturbine simulations. Several

numerical simulations for various test cases and computational grids should be performed

to demonstrate the capabilities and limitations of the present model in detail.

From a more general perspective, providing more detailed publicly available exper-

imental data should be considered. These data help in understanding the behavior of

vortex rope and vortex breakdown at different operating points of the turbine, and thus,

help in controlling its formation and effects. Furthermore, they are necessary to vali-

date models and simulations. An important set of measurements are related to the inlet

conditions to the draft tube. Numerical simulations of vortex rope formation usually

include the draft tube with prescribed inlet boundary conditions; however, not all of the

quantities at the inlet are available. Therefore, it is inevitable to have to “assume” some

of these quantities (specially those related to turbulence) which would affect the solu-



160

tion. Detailed measurements will improve numerical simulations by eliminating these

non-realistic assumptions.



Appendix A

Videos

A.1 Vortex Rope Formation Inside the FLINDT Draft Tube

This video shows the formation of a vortex rope inside the FLINDT draft tube. Iso-

pressure surfaces are chosen to illustrate the vortex rope. As shown in this video, the

tail of the vortex rope may impact the inner side of the elbow wall. This impact, called

the “shock phenomenon”, induces strong acoustic noise, pressure fluctuations, and even

structural vibrations. The flow rate is 70% of the flow rate at BEP.

Note: Adobe Acrobat 6, or later, is required to play the video.
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A.2 Mitigation of the Vortex Rope by Water Jet Injection

The video shows the isopressure surfaces representing the vortex rope in the draft tube

(blue), as well as the axial velocity contours (red) on the meridian plane (the darker the

red color, the higher the axial velocity). It is clearly seen how a water jet can eliminate

the stagnant region at the center of the draft tube, and thereby control the vortex rope

formation. The flow rate is 70% of the flow rate at BEP, and the jet flow rate is only

about 1% of the total flow rate.

Note: Adobe Acrobat 6, or later, is required to play the video.
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[56] Fröhlich, J. and D. von Terzi (2008) “Hybrid LES/RANS methods for the
simulation of turbulent flows,” Progress in Aerospace Sciences, 44(5), pp. 349–
377.

[57] Balaras, E., C. Benocci, and U. Piomelli (1996) “Two-layer approximate
boundary conditions for large-eddy simulations,” AIAA Journal, 34(6), pp. 1111–
1119.

[58] Wang, M. and P. Moin (2002) “Dynamic wall modeling for large-eddy simulation
of complex turbulent flows,” Physics of Fluids, 14(7), pp. 2043–2051.

[59] Kawai, S. and J. Larsson (2013) “Dynamic non-equilibrium wall-modeling for
large eddy simulation at high Reynolds numbers,” Physics of Fluids, 25(1), p.
015105.

[60] Kawai, S. and K. Asada (2013) “Wall-modeled large-eddy simulation of high
Reynolds number flow around an airfoil near stall condition,” Computers & Fluids,
85, pp. 105–113.

[61] Sagaut, P., S. Deck, and M. Terracol (2006) Multiscale and multiresolution
approaches in turbulence, Imperial College Press.

[62] Piomelli, U. and E. Balaras (2002) “Wall-layer models for large-eddy simula-
tions,” Annual Review of Fluid Mechanics, 34(1), pp. 349–374.

[63] Mathey, F., D. Cokljat, J.-P. Bertoglio, and E. Sergent (2006) “Specifi-
cation of LES inlet boundary condition using vortex method,” Progress in Com-
putational Fluid Dynamics, 6, pp. 58–67.



170

[64] Wilcox, D. C. (2006) Turbulence Modeling for CFD, DCW industries.

[65] Rumsey, C., “NASA Langley Research Center, Turbulence Modeling Resource,”
Available at http://turbmodels.larc.nasa.gov (11/12/2014).

[66] Haase, W., M. Braza, and A. Revell (2009) DESider–A European Effort
on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project,
2004-2007, vol. 103, Springer.

[67] Launder, B. E. and N. D. Sandham (2002) Closure Strategies for Turbulent
and Transitional Flows, Cambridge University Press.

[68] Shih, T.-H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu (1995) “A new
k − ε eddy viscosity model for high reynolds number turbulent flows,” Computers
& Fluids, 24(3), pp. 227–238.

[69] Wilcox, D. C. (1988) “Reassessment of the scale-determining equation for ad-
vanced turbulence models,” AIAA Journal, 26(11), pp. 1299–1310.

[70] Menter, F. R. (1994) “Two-equation eddy-viscosity turbulence models for engi-
neering applications,” AIAA Journal, 32(8), pp. 1598–1605.

[71] Launder, B. E. and D. Spalding (1974) “The numerical computation of turbu-
lent flows,” Computer Methods in Applied Mechanics and Engineering, 3(2), pp.
269–289.

[72] Patel, V. C., W. Rodi, and G. Scheuerer (1985) “Turbulence models for
near-wall and low Reynolds number flows-a review,” AIAA Journal, 23(9), pp.
1308–1319.

[73] Chen, H. and V. Patel (1988) “Near-wall turbulence models for complex flows
including separation,” AIAA Journal, 26(6), pp. 641–648.

[74] Schmidt, T., C. Mockett, and F. Thiele (2009) “Adaptive wall function for
the prediction of turbulent flows,” in MEGADESIGN and MegaOpt–German Ini-
tiatives for Aerodynamic Simulation and Optimization in Aircraft Design, Springer,
pp. 21–33.

[75] Spalart, P. R. (2009) “Detached-eddy simulation,” Annual Review of Fluid Me-
chanics, 41, pp. 181–202.

[76] Kok, J., H. Dol, B. Oskam, and H. van der Ven (2004) “Extra-large eddy
simulation of massively separated flows,” AIAA paper 264.

[77] Chaouat, B. and R. Schiestel (2005) “A new partially integrated transport
model for subgrid-scale stresses and dissipation rate for turbulent developing
flows,” Physics of Fluids, 17(6), p. 065106.

[78] Girimaji, S. S. (2006) “Partially-averaged Navier-Stokes model for turbulence: A
Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method,”
Journal of Applied Mechanics, 73(3), pp. 413–421.



171

[79] Menter, F. and Y. Egorov (2006) “SAS turbulence modelling of technical
flows,” in Direct and Large-Eddy Simulation VI, Springer, pp. 687–694.

[80] Travin, A., M. Shur, M. Strelets, and P. Spalart (2002) “Physical and
numerical upgrades in the detached-eddy simulation of complex turbulent flows,”
in Advances in LES of complex flows, Springer, pp. 239–254.

[81] Shur, M., P. Spalart, M. Strelets, and A. Travin (1999) “Detached-eddy
simulation of an airfoil at high angle of attack,” in Proceedings of the 4th In-
ternational Symposium On Engineering Turbulence Modeling and Measurements
(Corsica, France).

[82] Spalart, P., W. Jou, M. Strelets, and S. Allmaras (1997) “Comments
on the feasibility of LES for wings, and on a hybrid RANS/LES approach,” in
Advances in DNS/LES, Greyden Press Columbus, pp. 137–148.

[83] Menter, F., M. Kuntz, and R. Langtry (2003) “Ten years of industrial expe-
rience with the SST turbulence model,” in Turbulence, heat and mass transfer 4,
Begell House Inc., pp. 625–632.

[84] Mockett, C. (2009) A Comprehensive Study of Detached Eddy Simulation, Ph.D.
thesis, Technische Universitt Berlin.

[85] ANSYS Inc. (2011) ANSYS FLUENT 14.0 Theory Guide.

[86] Spalart, P. R., S. Deck, M. Shur, K. Squires, M. K. Strelets, and
A. Travin (2006) “A new version of detached-eddy simulation, resistant to am-
biguous grid densities,” Theoretical and computational fluid dynamics, 20(3), pp.
181–195.
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