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Executive Summary 
Hydropower is an important renewable energy resource. It is low-carbon, emits nearly no 
particulate pollution, can ramp quickly, and is capable of storing energy across many hours or 
days. While it is a very valuable resource by itself, hydropower can also serve as a key enabler 
for the increased penetration of non-dispatchable renewable energy resources like wind and solar 
power. 

This project focused on developing an optimization-based coordinated control framework for a 
hydropower cascade. It consisted largely of two parts. The first is the development of the 
coordination scheme. The second is the simulation and state estimation tools that were developed 
to allow comparisons between historical operations and the operations dictated by the 
coordination scheme. 

The coordinated control scheme that we developed is based on a control technique known as 
Model Predictive Control (MPC), wherein a linear state space model is designed to model the 
hydraulics of a hydropower cascade. Here, the hydraulics model describes how water flows in a 
hydropower cascade change the reservoir elevations behind each hydropower plant. The model 
accounts for the delay between water discharged from the upstream plant affecting the forebay 
elevation of the downstream plant. 

The control scheme also accounts for the non-linear character of tailrace elevations. There is an 
obvious relationship between the amount of water discharged into the tailrace and the tailrace 
elevation. Our modeling work takes that a step further by identifying the conditions that lead to 
encroachment and modeling encroachment. Encroachment is when the downstream forebay 
backs up into the upstream tailrace, causing the tailrace elevation to be higher than it would be 
otherwise. 

The optimization scheme also accounts for the relationship between turbine discharge, hydraulic 
head, and powerhouse generation in a hydropower plant. Turbine discharge and hydraulic head 
are mapped to a corresponding amount of powerhouse generation using a three-dimensional 
piecewise planar function. This function is fit to historical operations data. Since the relationship 
between the three variables can be represented using a set of linear functions, the model for 
hydropower production can be integrated into a linear or quadratic program. This results in an 
optimization model that is both fast and accurate, an improvement over other coordinated control 
schemes that are based on nonlinear or mixed-integer programming. 

The objective function was formulated to minimize the sum of the squared turbine discharge and 
spill for each hydropower plant. The weights were chosen such that water was preferentially 
discharged from large surface area reservoirs to small surface area reservoirs. This allocates a 
certain volume of water such that it results in the maximum total hydraulic head. Weighting 
turbine discharges in this way is unique in the hydropower optimization literature. 

We tested the coordinated control scheme on the Mid-Columbia hydropower system. The Mid-
Columbia consists of seven dams on the Columbia River in Eastern Washington State. Historical 
data on system operations allowed us to benchmark the performance of our coordination scheme 
with actual system operations. Further data was provided that allowed us to properly calibrate the 
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parameters of our model, including forebay and tailrace curves, travel times, and hydropower 
production functions. 

Simulations were conducted for a five-day period with five-minute time resolution. The results 
of our simulations, in brief, can be condensed into four areas. 

1. The hydraulic potential of the system (H/K) increased steadily over the course of the 
simulations. At the end of the simulation period, the total system H/K was 0.6% higher 
than in the historical case. This translates to several feet of additional hydraulic head. 

2. The net energy stored in the cascade increased. Overall, the net energy benefit was 1708 
MWh, or 0.33% of the total energy generated during the simulation period. In general, 
Grand Coulee ran an energy deficit (i.e., its forebay was lower in the optimized case than 
the historical case) and the remaining hydropower plants ran an energy surplus. 

3. Ramping was reduced substantially. Quantitative measures indicated that ramping 
decreased substantially at every hydropower plant besides Grand Coulee. Qualitatively, 
the discharge profiles were much smoother in the optimized case than in the historical 
case. This method of operation could have substantial (but uncertain) benefits to 
hydropower plant owners and operators due to less unit cycling and ramping, which 
results in lower maintenance and repair costs. 

4. System constraints were satisfied. The Mid-Columbia system is constrained at many 
times of the year due to environmental limits on turbine discharge, spill, and flow 
ramping. These limits are designed to ensure the health of salmon runs on the Columbia 
River and the spawning areas in the Hanford Reach downstream of Priest Rapids. One of 
the primary benefits of doing coordinated control in an optimization framework is that 
system constraints can be explicitly obeyed. This ensures that regulatory and legal 
bounds on system operations are satisfied completely. 

The second part of the research involved the development of a state estimation procedure for a 
hydropower cascade. Evaluating the coordinated control scheme necessitated developing a state 
estimation procedure to reconcile measured values of turbine discharge, spill, and forebay 
elevation. In lieu of being able to test the outputs of the coordinated control scheme on the actual 
Mid-Columbia system or on a high-fidelity simulator, an inherently inaccurate computer model 
must be used. This model will contain some modeling errors. Likewise, the measured flows and 
forebay elevations can be biased and noisy. 

These biases and noise levels are unknown and, a priori, we do not know which values can be 
trusted and to what extent. The state estimation procedure takes these values and the hydraulic 
model, and adjusts the measurements such that the model is open-loop stable and the estimated 
measurements are consistent with each other. The general idea is that one flow measurement is 
assumed to be the true flow through the system, and the other flows (upstream and/or 
downstream) are adjusted to reduce the residual error between the estimated flow and the 
measured flow. Constraints are added to the procedure to ensure that the estimated flow profile is 
similar to the measured flow profile. Results are given demonstrating the practical efficacy of the 
proposed state estimation method. 
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 1 Introduction 
Hydropower is an important energy resource in many parts of the United States, most especially 
in the Pacific Northwest region. It is the primary source of renewable electricity generation in the 
United States and the world, and it possesses unique characteristics that make it useful to electric 
power system operators. Hydropower needs less time than coal- or gas-fired power plants to 
ramp its generation basepoint. Reservoirs and hydropower systems with large storage capacities 
also have the ability to arbitrage energy generation across hourly or daily time frames; this is 
done by deferring hydropower production when other electricity generation is cheap, and 
generating more electricity when other generation is more expensive or less efficient. 
Additionally, once hydropower is built, it is emits low levels of particulates and carbon dioxide. 

Currently, the electric power system is transitioning from a system based on thermal and hydro 
generation to one that incorporates substantial amounts of wind and solar power. Wind and solar 
resources are intermittent (i.e., the wind does not always blow and the sun does not always shine) 
and variable (i.e., we cannot predict with perfect accuracy when and how much wind will blow 
or sun will shine). This presents a number of challenges to system operators. The ability to 
arbitrage energy and ramp quickly means that hydropower is uniquely positioned to address 
intermittency and variability from renewable energy resources. As the electric power system 
continues its transition to a low-carbon future, the role of hydropower, especially in the Pacific 
Northwest, stands to increase in importance. 

This project is concerned with developing a coordinated control scheme for a hydropower 
cascade. In this research, the term cascade refers to two or more hydropower plants situated 
along the same river or in the same river system. These hydropower plants are hydraulically 
coupled such that the flows from one hydropower plant affect the reservoir of the downstream 
hydropower plant. Hence, the flows from each hydropower plant should be coordinated to avoid 
unnecessary spill, maintain stable reservoir elevations and flows, and keep hydraulic heads as 
high as possible. Coordinated control schemes can vary in complexity, but the central tenet 
behind coordinated control is that operating the system as a whole can increase the efficiency of 
the system well beyond that which could be achieved by operating the system as discrete, 
unconnected hydropower plants. 

Section 2 details the coordinated control scheme that we developed for the Mid-Columbia 
hydropower system. The Mid-Columbia system consists of seven dams located on the Columbia 
River in the United States. The state space model accounts for system hydraulics, including 
water travel times and dynamic tailrace elevations. We accurately approximate the power 
generation from a hydropower plant using a piecewise planar function of turbine discharge and 
hydraulic head. We demonstrate how this approximation can be written as a set of linear 
constraints and integrated into a quadratic program. We introduce an objective function that 
maximizes efficiency by maximizing hydraulic head. Compared to historical operations, the 
proposed control scheme reduces ramping, increases total system hydraulic head, increases the 
energy content in the system at the end of the simulation period, and operates the system within 
all elevation and flow constraints. 

Section 3 describes a state estimation method for estimating discharges from hydropower plants. 
The optimization, control, and simulation of cascaded hydropower systems requires a 
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computational model for system hydraulics. Since this model is an approximation of some 
physical reality, it will inevitably contain inaccuracies. When doing an open-loop simulation 
using the developed system model and historical measurements of the system (e.g., discharge 
and forebay elevation), these small modeling errors will accumulate and propagate, resulting in 
errors that increase with the length of the simulation. Measurement noise and bias only 
exacerbates the problem. However, determining the worth of a proposed control scheme 
necessitates comparing it to a historical baseline. Without accounting for measurement error, 
which is typically unknown or uncertain, directly comparing historical discharges to those 
computed by the control scheme would be like comparing apples to pears. 

In Section 3, we propose a method that uses a hydraulic model, historical data, and state 
estimation to compute estimated discharges and forebay elevations, thus allowing a true apples to 
apples comparison. State estimation is a mathematical technique that can be used to reconcile the 
discharge measurements with the recorded forebay elevations. Since forebay elevation 
measurements are more accurate than flow measurements, they are assumed to reflect the “true” 
system state. The inputs to the method are the historical discharge and forebay elevation 
measurements, and the outputs are the estimated discharges and forebay elevations. Using these 
values, it is then possible to compare a simulated control scheme with the historical operations of 
the system in a reasonable and accurate way. Example simulations are done using data from the 
Mid-Columbia hydropower system. 
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 2 Real-Time Optimization of the Mid-Columbia 
Hydropower System 

Introduction 

The operation of cascaded hydropower plants (HPPs) as an integrated system is known as 
coordinated control. Coordinated control improves the ability of each HPP to meet its regulatory 
and environmental limits on turbine discharge, spill, and forebay elevation. Coordination 
provides other ancillary benefits, including the reduction of turbine-generator ramping and 
cycling, maintenance of stable forebay elevations, provision of additional scheduling flexibility 
for HPP stakeholders, and efficient water use. 

Since every hydropower facility and system is unique, coordinated control schemes are tailored 
to particular systems, regions, and operating objectives. As a result, they can have significantly 
varying capabilities and complexity. Approaches include those based on heuristics [1], genetic 
algorithms [2], mixed-integer linear programming [3-5], nonlinear programming [6], and 
dynamic programming [7]. Determining what variables are important and how those variables 
should be modeled and optimized is a design decision that varies according to the scope of the 
proposed control scheme. 

This section presents a real-time control scheme for the Mid-Columbia hydropower system. The 
Mid-Columbia system consists of seven dams along the Columbia River. Our research objective 
is to analyze the performance improvements of doing optimization in real-time operations, 
relative to the historical dispatch of the Mid-Columbia system. 

We were provided two sets of data for the Mid-Columbia system. Each set of data contains time 
stamped measurements of turbine discharge, spill, forebay elevation, tailrace elevation, power 
generation, and the anonymized generation requests of individual stakeholders. The data sets also 
include real-time minimum and maximum limits for forebay elevation, turbine discharge, and 
generator ramping. The first set of data was provided at five-minute resolution for all of 2012 
(105,408 sample points). The second set of data was provided at one-minute resolution for six 
representative weeks in 2013 (60,480 sample points). These data sets will be referred to as the 
five-minute dataset and one-minute dataset, respectively. 

The section is organized as follows. “Hydraulic Model” describes the state space model of the 
hydropower cascade. “Hydropower Production Function” introduces the piecewise planar 
approximation of the hydropower production function and how we incorporate it as a set of 
linear constraints. “Optimization Problem” reviews the optimization problem and the 
formulation of the objective function. “Case study” presents a case study evaluating our 
proposed control scheme against the historical operation of the Mid-Columbia system. 
“Conclusion” concludes this section. 

Hydraulic Model 

The proposed control scheme employs Model Predictive Control (MPC), a type of receding 
horizon control in which a linear state space model is used to predict the reaction of a system to a 
set of control inputs. The designer creates an objective function that maps the future values of the 
control inputs, system state, and system outputs to a scalar evaluation metric. Using linear or 
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quadratic programming, the control sequence that delivers the best performance over the time 
horizon is computed. The first step of this control trajectory is then applied, and the system is 
observed at the next time step. This procedure repeats indefinitely. Linear, time-discrete MPC 
models have the general form 

 ( 1) ( ) ( ) for 0, , 1k A k B k k K     x x u  (2.1) 

 ( ) ( ) for 1, ,k C k k K  y x  (2.2) 

Where ( )ku  is the vector of control variables, ( )kx  is the vector of state variables, and ( )ky is 

the vector of observed variables. The A  and B  matrices describe the relationship between the 
control inputs, current system state, and future system state. Similarly, the C  matrix is the 
relationship between the system state ( )kx  and the observed system state ( )ky . K  is the 
discrete time-horizon over which the system is optimized. Constraints on state, control, and 
observed variables are explicitly incorporated into the MPC model. Additionally, since the state 
variable cannot change instantaneously, (0)x  is a fixed value reflecting the initial system state. 

Hydraulic coupling of sequential reservoirs 

In a cascaded hydropower system, hydraulic coupling can be modeled with a water balance 
equation in which water discharged from the upstream HPP arrives in the reservoir of the 
downstream dam after some travel time. (Since the Mid-Columbia system does not have any 
branching, our hydraulic modeling assumes that the cascaded system is situated on a single river. 
However, these equations can be generalized to cascaded systems containing two or more rivers 
[8].) Mathematically, 

    1 1( 1) ( ) ( ) ( ) ( ) ( ) ( )k k
j j j j j j j j j j

j j

t t
x k x k q k s k w k q k s k            

 
 (2.3) 

Where the natural inflow into the reservoir behind dam j  is denoted by  w kj ; turbine 

discharge and spill through dam j  is denoted by ( )jq k  and ( )js k , respectively; and the water 

level behind dam j  is denoted by ( )jx k . There are a total of J  dams in the cascade. j  is the 

effective surface area of the reservoir behind dam j . The model is discretized by kt , the length 

of the optimization interval. The k jt   term in (2.3) maps water flow into or out of reservoir j  

to a proportional increase or decrease in the elevation of reservoir j . The travel time j between 

dam 1j   and dam j  is normalized by the optimization time step kt . In our previous work, we 

implicitly set 0j  [9]. In this research, we were provided travel times for each reach in the 

Mid-Columbia system, information that we used to improve the model. 

The state space model used in MPC relates the system state and control inputs at time k  with the 
system state at the next time step 1k  . Since the travel time between each dam is several times 
the length of the optimization time step, the formulation in (2.3) cannot be used directly in the 
state space model. Thus, we introduce additional state variables, denoted by , ( )j mb k . In physical 
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terms, , ( )j mb k  can be interpreted as the volume of water discharged from dam 1j   during time 

step k m . 

For each dam j , there are jM  of these variables, where 

 .j jM      (2.4) 

From the use of the ceiling operator     in (2.4), and the fact that the time delay 0j  , it is 

obvious that jM   for 1, ,j J  . (For the first dam in the cascade, the travel time 1  is 

dependent on the location of the inflow gauge.) 

We can now rewrite (2.3) as a series of three relationships that couple the discharge from dam 
1j  ; the volume of water in ,j mb  for all 2, , jm M  ; and the forebay elevation jx . The state 

delay variables are specified as 

  ,1 1 1( 1) ( ) ( ) ( )j k j j jb k t w k q k s k      (2.5) 

 , , 1( 1) ( )j m j mb k b k   (2.6) 

and the forebay elevation is specified as 

  ,

1
( 1) ( ) ( ) ( ) ( ) .

j

k
j j j M j j

j j

t
x k x k b k q k s k    

 
 (2.7) 

Next, we introduce limits on the state and control variables corresponding to each dam j  

 min max( )j j jq q k q   (2.8) 

 min max( )j j js s k s   (2.9) 

 pred pred( ) ( ) ( )j j jw k w k w k   (2.10) 

 min max( )j j jx x k x   (2.11) 

where (2.8) and (2.9) limit turbine discharge and spill to fixed minimum and maximum values 
and (2.10) limits natural inflow to values determined by a forecast. Limits on forebay elevation 
(2.11) are dictated by the regulatory, environmental, and operational constraints specific to each 
catchment. We consider limits on state and control variables to be static for the time horizon of 
interest, but the modeling approach could incorporate constraints that vary with time. 

Modeling tailrace elevation 

The tailrace is the water immediately downstream of a dam into which the spillway and turbines 
discharge. The tailrace elevation directly affects the hydraulic head, which in turn affects the 
power generated in the turbines. Hence, accurately modeling power generation necessitates 
accurately modeling the tailrace elevation. There is a direct and substantial relationship between 
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the water discharged into the tailrace and the water level in the tailrace. In the literature, non-
linear optimization techniques typically model this relationship using polynomial functions of 
turbine discharge [10-12]. Linear or quadratic programming models often use an affine tailrace 
function [13]. 

In our previous research [9], the tailrace elevation above sea level jz  was computed as 

 0( 1) · ( )j j j jz k q k z    (2.12) 

where j  and 0
jz  were parameters fitted using ordinary least-squares regression. Further analysis 

of the tailrace measurement data indicated that the tailrace elevation was also correlated with the 
downstream forebay elevation. Adding a term for the forebay elevation, we modified (2.12) to be 

 0
1( 1) · ( ) · ( )j j j j j jz k q k x k z       (2.13) 

where j , j , and 0
jz  were parameters fitted using ordinary least-squares regression. This 

improved the performance of the tailrace function markedly. However, there were still instances 
where the predicted tailrace elevation was many tens of centimeters lower or higher than the 
actual tailrace elevation. This occurs because the tailrace elevation can have a non-continuous 
dependence on the downstream forebay elevation, moving between two modes: encroached and 
not encroached. Encroachment in the Mid-Columbia system is a problem that has been identified 
and is accounted for by system operators. 

Here, we introduce the variable j  to represent the encroachment status of dam j . When dam j  

is encroached, 0j  . When dam j  is not encroached, 1j  . When the tailrace is transitioning 

between the two modes (i.e., 0 1j  ), dam j  is said to be partially encroached. Whether or 

not a dam is encroached depends on the tailrace elevation of the upstream HPP and the 
downstream forebay elevation. If the upstream tailrace elevation is high due to increased 
discharges and the downstream forebay has been drafted, the dam will not be encroached. 
Similarly, if the upstream discharges are low and the downstream forebay is near its maximum 
elevation, the upstream dam will likely be encroached. So, we define j  as a function of (0)j , 

where 

 1(0) (0) (0).j j jz x    (2.14) 

We elected to define j  as a piecewise linear approximation to the logit function, shown in 

Figure 2-1, although any classification function that is both monotonically non-decreasing and 
constrained to be between 0 and 1 could be used. 
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Figure 2-1 
General form of the encroachment classification function φ 

A new value for j  is computed before each optimization interval using the system state 

variables at 0k   (i.e., the definition of j  in (2.14)). We then redefine the tailrace function 

(2.13) to be 

 1 2( 1) · ( 1) (1 )· ( 1)j j j j jz k z k z k        (2.15) 

where 

 1 1 1 0,1
1( 1) · ( ) · ( )j j j j j jz k q k x k z       (2.16) 

 2 2 2 0,2
1( 1) · ( ) · ( )j j j j j jz k q k x k z       (2.17) 

in which we fit two sets of regression parameters, partitioning the data according to the 
classification function j . The slope and intercept parameters for j  were selected via an 

exhaustive search for the j  that resulted in the smallest mean squared error. Note that using 

(2.15) instead of (2.13) does not affect the complexity of the MPC model, because j  is 

determined before each MPC optimization run. In other words, (2.15) will be simplified to an 
equation that looks like (2.13) before each run of the MPC optimization model. Note also that the 
model proposed in (2.15) contains the affine term 0

jz , so we compute the linear term using the 

state space model and then add the affine term whenever we need to compute the tailrace 
elevation in meters above sea level [9]. This is necessary in order to compute hydraulic head h , 
which is the difference between the forebay and tailrace elevations, or 

 ( ) ( ) ( ).j j jh k x k z k   (2.18) 
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Table 2-1 
Performance evaluation of different tailrace models 

 

To make the case for why the tailrace model in (2.15) is necessary, we collected statistics on the 
performance of the models described by (2.12), (2.13), and (2.15), denoted as Model 1, 2, and 3, 
respectively. The tailrace elevations predicted using Model 3 were calculated using the value for 

j  computed one hour prior. These results are shown in Table 2-1. Data was trained on the one-

minute dataset and tested on the five-minute dataset. The first three columns of data contain the 
standard error for the testing sequence. The final two columns show the standard error for 
Models 2 and 3 normalized by the standard error obtained using Model 1. This table illustrates a 
marked improvement when using Model 3 for several of the projects in the cascade, especially 
Grand Coulee, Chief Joseph, and Wanapum. Figure 2-2 shows the predicted and modeled 
tailraces for Chief Joseph Dam. From the figure, we again note the substantial performance gain 
and increase in predictive power obtained using Model 3. 

 

Figure 2-2 
Graphical comparison of different tailrace models 



 

2-7 

Hydropower Production Function 

Nonlinear hydropower production function 

The amount of gross electrical power extracted from a hydro turbine-generator is a non-linear 
function of turbine efficiency t , generator efficiency g , turbine discharge q , and hydraulic 

head h [14]. This is known as the hydropower production function (HPF). Mathematically, 

 ( , , , ) · · · ·t g t gp q h q h     (2.19) 

where p  is the gross electrical power produced by the generator and   is a conversion constant. 
We can rewrite (2.19) to be 

 ( , ) · ( , )· ( , )· ·t gp q h q h q h q h   (2.20) 

if we assume that turbine and generator efficiencies are functions of hydraulic head and 
discharge. Generator efficiency is typically greater than 95% and is monotonically non-
decreasing with increased generator loading [15]. The efficiency curve for an individual turbine 
is a concave function commonly referred to as the hill chart. Turbine efficiency can be as low as 
60% at minimum discharge and as high as 95% at the best efficiency point [15]. The shape of the 
hill chart varies depending on the design and age of the turbine [16]. The HPF (2.20) can also 
contain additional terms, such as losses associated with the friction of water in the penstocks or 
trash racks. These terms can either be considered explicitly or modeled as a reduction of the net 
hydraulic head [11],[14]. 

The detail with which the HPF needs to be incorporated into an optimization or planning model 
depends on the time horizon, temporal resolution, scale, and goals of the model. For example, 
head and efficiency effects in long-term optimization can be ignored because powerhouses can 
be reasonably expected to operate near some average efficiency and hydraulic head. In short-
term optimization, as discussed in this research, modeling should be done with a fine enough 
temporal resolution that captures the rapidly changing system state. Hence, the HPF must be 
fully modeled as a function of the turbine discharge q  and the hydraulic head h . Explicitly 
considering the efficiency terms and the bilinear qh  term requires approaches rooted in non-
linear or mixed-integer programming [5],[6]. Unfortunately, these models have a high 
computational cost and suffer from the curse of dimensionality, limiting their applicability to 
cascaded systems or to optimization across long time horizons. Reducing computational 
complexity and decreasing run times generally requires assuming that hydraulic head is constant 
and the HPF is concave. This can be achieved by approximating the HPF with a set of piecewise 
linear constraints [3],[8]. 

In the literature, most hydro scheduling models fall into one of two categories: accurate and 
slow, or inaccurate and fast. However, the problem of real-time coordination of cascaded 
hydropower plants requires an optimization approach that is both computationally efficient and 
accurate. The optimization must be efficient since it should be able to run in real-time. (From a 
practical standpoint, studies that simulate real-time optimization would not be feasible if each 
optimization time step took too long.) The optimization approach must also be accurate across a 
range of operating parameters in order to account for quickly changing system conditions. The 
primary contribution of this part of our work lies in how we linearize the HPF and integrate it 
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into an MPC optimization framework. Here, we extend and revise the methods contained in our 
previous paper [9]. 

Our optimization model does not account for the scheduling and dispatch of individual turbine-
generator units. Rather, we optimize each HPP at the powerhouse level [17]. The reason for 
doing this is threefold. First, it is difficult to find data that can fully and accurately characterize 
the efficiency curves and various loss functions in an HPP [14]. Hill charts, when they are 
available, can be many years or decades old. Second, optimizing the cascade at the unit level 
would increase the computational complexity, scale, and solution time of each optimization 
problem. Third, and most importantly, coordination on the Mid-Columbia system does not reach 
into the powerhouse of individual HPPs. The system coordinator sets the generation basepoint 
for each HPP but does not specify how many units should be online or what their dispatches 
should be. As such, there is little utility in modeling a part of the Mid-Columbia system that is 
neither controllable nor observable by the system coordinator. 

Linearizing the hydropower production function 

In order to create an accurate model, we need to approximate the HPF using a function of turbine 
discharge and hydraulic head without explicitly considering the terms on the right-hand side of 
(2.20). In order to create a fast model, we need to be able to write that approximation as a set of 
linear constraints without employing mixed-integer variables [5],[18],[19]. Since using a simple 
three-dimensional linear function was not sufficient, we elected to employ a piecewise planar 
approximation of each HPF. 

Our linearization process is a standard segmented regression with continuity and convexity 
constraints [20]. In a segmented regression, the covariates are partitioned into sections and a 
separate linear function is fit to each section. Since the number and position of each section is 
pre-selected, the problem is computationally simple. In our regression, the covariates are the 
turbine discharge q , hydraulic head h , and an intercept term. Each partition is defined as the 
triangle formed by a triplet of ( , )q h  coordinates. The problem simplifies to a constrained least-
squares quadratic program with dimension proportional to the number of partitions. 

The regression is fit to data from the one- and five-minute datasets. The partitions are selected in 
an ad hoc fashion, since selecting the optimal number and position of the partitions is a 
computationally intractable problem. The partitions have the constraint that  max min,h h h  and 

min maxq q q  . The maximum and minimum hydraulic heads are selected such that the 
approximated HPF covers the feasible set of q  and h . Additionally, we add a constraint so that 
the function is concave in the q̂  direction for all values of h . Figure 2-3 shows the approximated 
HPF for Wells Dam and the sample points used in the regression. 
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Figure 2-3 
Approximated hydropower production function for Wells Dam 

Auxiliary variables for discharge and generation 

For each section of the piecewise linear approximation of the hydropower production function, 
we introduce auxiliary variables i

jq  and i
jp  that correspond to the turbine discharge and power 

associated with each section of dam j . No separate variables are needed for hydraulic head. 
These three variables create equality constraints for each section i  of the piecewise linear 
function of the form 

 0, , ,( ) · ( ) · ( )i i h i q i i
j j j j j jp k h k q k      (2.21) 

where the β’s are computed in the fitting process and jI  is the number of sections in the HPF 

approximation for dam j . Figure 2-4 demonstrates how these variables are assigned. 
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Figure 2-4 
Illustrative diagram of a piecewise linear hydropower production function with five sections 

As discussed in the previous section, each triangular section is defined by three points of the 
form ( , , )j j jh pq . Each section shares two common points with the section that precedes it as one 

moves in the q̂  direction. These two points form a line that can be projected onto the ( , )j jq h  

plane. The projection of the approximated HPF onto the ( , )j jq h  plane is shown in Figure 2-4 in 

blue. Using the relationship established in (2.21), the intersection of two adjacent sections is 

 
, , 1 0, 0, 1

,min
, 1 , , 1 ,

( ) · .
h i h i i i
j j j ji

j j jq i q i q i q i
j j j j

q h h
   
   

 

 

 
 

 
 (2.22) 

These functions correspond to the lower and upper limits for the auxiliary variable i
jq , or 

 ,min 1,min( ) ( ).i i i i
j j j j j jq h q q q h   (2.23) 

Since the approximated HPF is concave in the q̂  direction, it is not necessary to add a mixed-

integer or nonlinear constraint that ensures only one auxiliary variable i
jq  will not be equal to 

either its upper or lower boundary. However, such a mixed-integer constraint could be added to 
this formulation [21]. Note that in the case of the first section, the lower limit for 1

jq  is the 

minimum turbine discharge. Similarly, in the case of the last section jI , the upper limit for jI

jq  

is the maximum turbine discharge. 
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Total turbine discharge and generation 

The total turbine discharge is the sum of all auxiliary turbine discharge variables minus their 
lower limits. Mathematically, 

 1 ,min

2

( ) .
jI

i i
j j j j j

i

q q q q h


      (2.24) 

A similar approach is used to compute total power production. Similar to the computation of 
,min ( )i
j jq h , we compute ,min ( )i

j jp h  by projecting the linearized HPF onto the ( , )j jp h  plane. This 

projection is shown in Figure 2-4 in red. We can define the minimum power for section i  of the 
hydropower production function as 

 
, , 1 , 1 , , 0, 1 , 1 0,

,min
, , 1 , , 1

( ) ·
q i h i q i h i q i i q i i
j j j j j j j ji

j j jq i q i q i q i
j j j j

p h h
       

   

   

 

 
 

 
 (2.25) 

as a function of the hydraulic head jh . Then, as in (2.24), the total power production is 

 1 ,min

2

( , ) ( )
jI

i i i i
j j j j j j j

i

p p p q h p h


      (2.26) 

where i
jp  is calculated by (2.21). In other words, the total power production is the sum of the 

marginal power production from all sections of the linearized HPF. No constraints on i
jp  are 

necessary since it is a linear function of i
jq  and jh , which are constrained by (2.18) and (2.23). 

Optimization Problem 

The state variables in our optimization model are the forebay elevation jx , tailrace elevation jz , 

and time delay variables ,j mb . The control variables are turbine discharge jq , spill js , and natural 

inflow jw . The MPC model is defined by relationships and (2.5) to (2.11). There are additional 

auxiliary turbine discharge and power variables for representing the approximated HPF. Finally, 
we introduce a power balance constraint 

 load
1

( ) ( ) for 0,1,..., 1
J

j
j

p k p k k K


    (2.27) 

where load ( )p k  is the forecasted net load satisfied by the cascade during a particular interval. 

Our objective function is to minimize turbine discharge and spill. The objective function can be 
written as 

    
1 2 20 0

,
0 1

min ( ) ( )
j j

K J

q s j j j j j j
k j

a q k a c s k c


 

       (2.28) 
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where ja  and jc  are scalar weights, and 0
ja  and 0

jc  are scalar reference values. The quadratic 

program is convex if the scalar weights are non-negative. 

Qualitatively, the goal of our coordinated control scheme is to minimize the amount of water 
needed to satisfy the system power balance, or (equivalently) to maximize the amount of stored 

water energy in the cascade. This is achieved by maximizing the effective hydraulic head h : the 
product of powerhouse efficiency   and hydraulic head h . If the turbine discharge of plant j  is 

jq , then the resulting change in effective hydraulic heads are 

 1
1

1

· ·j j
j k j j k j

j j

h t q h t q
  




   
 

   (2.29) 

where the upstream forebay elevation decreases and the downstream forebay elevation increases. 
In other words, for every one meter increase in the downstream forebay elevation, the upstream 
forebay elevation decreases according to the ratio 

 1

11

· .j j j

j jj

h

h








 





  (2.30) 

If the ratio is less than one (greater than one), then we can gain (lose) hydraulic head by 
discharging water from the upstream forebay to the downstream forebay. Using this ratio, we 
choose our weights such that 

 

2

1 0

1

· 0j j
j j

j j

a a







 
    

 (2.31) 

for 1, ,j J  . We square the ratio because we are weighting 2
jq . In the case of the final dam in 

the cascade, there is no downstream forebay or HPP. Hence, we choose the weights Ja  and 0
Ja  

large respective to the other weights on turbine discharge. Since we want to heavily penalize 
spill, we choose the weights jc  and 0

jc  very large. Weights used in our case study are given in 

the next section. 

Case study 

The coordination scheme developed in the previous sections was designed for the Mid-Columbia 
hydropower system. To demonstrate the efficacy of our scheme, we benchmarked the 
performance of our model to historical operations. The historical data was run through a state 
estimator to obtain turbine discharges that, when used as control inputs to the open-loop 
hydraulic model, resulted in forebay elevations that matched the historic values. Tailrace 
elevations were then computed using the developed tailrace model. Using the state estimated 
turbine discharges and hydraulic head, we then used local regression to compute the power 
production. Philosophically, if our coordination scheme computed the same control inputs as 
those used in historic system operations, the goal of the state estimation procedure was to ensure 
that the performance of our coordination scheme would be the same as that of the actual system 
operations. 
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Table 2-2 
Simulation inputs and results, with elevations x given in meters, surface areas Ψ given in square meters, 
travel times τ in minutes, and energy given in MWh. The turbine discharge ramping score does not units, but 
a lower score indicates less ramping. 

 

Hydraulic information about the Mid-Columbia system was determined and validated using the 
one- and five-minute datasets, including turbine discharges and limits, forebay elevations and 
limits, tailrace elevations, HPFs used to compute power production, water travel times, and 
reservoir surface areas. The total system load is shown in Figure 2-5. Natural inflow data, 
including flow into the Grand Coulee forebay, was compiled from streamflow data provided by 
the United States Geological Survey with 15-minute resolution [22]. These nature inflows on the 
Mid-Columbia River are usually a small percentage of the flow on the main stem river, and flow 
does not vary substantially on a minute-by-minute basis. Power forecasts were assumed to be 
perfect. System parameters and some results are given in Table 2-2. 

 

Figure 2-5 
System load was significantly below system nameplate capacity during the simulation period. 

We chose a period of five days (120 hours) in March 2013 for which we had one-minute Mid-
Columbia operations data. We used an optimization interval kt  of five minutes, simulation 

interval of one minute, and time horizon K  of four hours ( 48K  ). The coordination scheme 
determined a generation basepoint that was then mapped to a corresponding turbine discharge. In 
each simulation interval, the power balance was met while minimizing the deviation of each HPP 
from its basepoint and maintaining the feasibility of the system. Simulations were run on a 
desktop computer with an Intel Core 2 Duo 3.16 GHz and 4 GB of RAM running MATLAB 
2012b (32-bit). We used the qp-minos solver called via the TOMLAB interface. The 
optimization problem consisted of 4,135 variables and 10,344 inequality constraints. The full 
simulation ran in 2:48:38 hours, or 7.44 seconds per optimization interval. This is an order of 
magnitude faster than comparable non-linear or mixed-integer optimization schemes. 

We evaluated the performance of our coordination on four objectives: hydraulic potential, energy 
content, turbine discharge ramping, and the handling of system constraints. 
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Hydraulic potential. The objective function was designed to allocate water such that hydraulic 
head, or H/K, was maximized. Figure 2-6 shows that large forebays (e.g., Wanapum) were 
drafted in order to maintain hydraulic head at HPPs with small forebays (e.g., Priest Rapids). 
Total system H/K was 0.6% higher at the end of the simulation period, as shown in Figure 2-7. 
Hydraulic potential steadily increased during the study period, demonstrating how increased 
hydraulic potential results in lower flows which then results in increased hydraulic potential and 
so on. 

 

Figure 2-6 
Forebays with small surface areas were kept full at the expense of forebays with larger surface areas. This 
strategy maximizes the hydraulic potential of the system. 
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Figure 2-7 
Hydraulic potential, or H/K, increased steadily over the course of the five-day simulation period, ending 
approximately 0.6% greater. 

Energy. Net energy stored in the cascade is the total stored energy in the cascade in the 
optimized case minus total stored energy in the cascade in the historical case. The energy stored 
in a single reservoir accounts for the water stored in that reservoir and the upstream reservoirs. 
This accounts for the fact that water in upstream HPPs must still be discharged through the 
downstream HPPs and is therefore inherently more valuable. Mathematically, 

  opt hist1

1

1

( )
( ) · ( ) ( )

( )

n

j j
m

j j i in
i

j
m

p m
E n x n x n

q m







  





 (2.32) 

where ( )jE n  is the energy stored in reservoir j  at time n . System energy is the running sum of 

reservoir energies. In Table 2-2, these values are referred to as pond and system energy, 
respectively. As shown in Table 2-2 and illustrated in Figure 2-8, all HPPs ran an energy surplus 
except for Grand Coulee. Grand Coulee's forebay was drafted to supply the water to the 
downstream projects, as shown in Figure 2-6. Overall, the net energy benefit was 1708 MWh, or 
0.33% of the total energy produced during the five day simulation period. 

 

Figure 2-8 
The energy deficit at Grand Coulee Dam was compensated by energy surpluses at the remaining six dams. 
The total net energy stored was positive. 

Ramping. Ramping was reduced and turbine discharges had smoother profiles. Ramping was 
highest at Grand Coulee and lowest at Wanapum and Priest Rapids, as shown in Figure 2-9. 
Quantitative analysis shown in Table 2-2 corroborated the qualitative observation that ramping 
was reduced according to the location of the HPP in the cascade. Rampign scores are computed 
from the sum of the absolute change in turbine discharge at each time step; scores were 
calculated on smoothed turbine discharge data to remove the measurement and process noise in 
the historical data. The reduction in ramping was not an explicit optimization objective, but the 
behavior emerged from the quadratic objective function and the chosen weights. 
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Figure 2-9 
Ramping of turbine discharges was significantly reduced using the proposed coordination scheme. 

System constraints. We focus on one particular constraint, where Priest Rapids had a minimum 
discharge limit of 1900 m3/s. Priest Rapids experienced reverse load factoring, generating a 
larger share of energy during off-peak hours, as shown in Figure 2-10. Since we placed a heavy 
penalty on turbine discharge from Priest Rapids, Wanapum was drafted in order to maintain a 
full forebay at Priest Rapids and maintain maximum generation efficiency. This was the behavior 
we expected to see. The Mid-Columbia is heavily constrained by environmental regulations on 
flow, so the fact that the flow constraint at Priest Rapids was incorporated satisfactorily bodes 
well for the performance prospects of our coordination scheme in other scenarios. 
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Figure 2-10 
The high minimum discharge limit at Priest Rapids Dam resulted in Priest Rapids generating a larger share 
of the system generation during off-peak hours. Grand Coulee is on the top of the plot. Chief Joseph is below 
Grand Coulee, and so on. Priest Rapids is on the bottom of the chart. The white lines indicate the generation 
share if turbine discharge through each HPP was identical. 

Conclusion 

This section presented a coordinated control scheme for the Mid-Columbia hydropower system. 
Our hydraulic model consisted of the water balance equation (including water travel times) and a 
model of tailrace dynamics. We approximated the hydropower power production function using 
a piecewise planar function that can be written as a set of linear constraints. This approximation 
accounts for head effects and non-constant efficiency. The objective function was formulated to 
allocate water such that the total hydraulic head of the system was maximized. We compared the 
performance of our control scheme to the historical operation of the Mid-Columbia system. The 
results showed that our control scheme minimized ramping, increased system hydraulic head, 
increased the energy stored in the cascade, and successfully handled system constraints. Future 
work includes the analysis of different objective functions that maximize water use efficiency, 
and the assessment of our scheme under different load and constraint scenarios. We also intend 
to study how the approximated HPF might be incorporated when the objective function causes 
the approximated HPF to be evaluated incorrectly (i.e., when the objective is to minimize 
something other than turbine discharge and spill). Additionally, we plan to use this control 
framework to analyze the ability of the municipal dams located on the Mid-Columbia river to 
balance the wind generation variability. 
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 3 Simulation of a Hydropower Cascade Using Historical 
Data and State Estimation 

Introduction 

Controller design for physical systems consists of several phases. The physical system must first 
be characterized in order to make engineering decisions about which attributes and relationships 
are important and which can be ignored. These attributes and relationships are used to derive a 
model according to whatever model properties are important (e.g., linear or non-linear, time-
invariant or time-varying, causal or non-causal). More complicated models will (generally) more 
accurately reflect the behavior of the system, but fitting additional parameters can be difficult 
without adequate information. The validity of the model can be evaluated by analyzing how 
closely the output of the model corresponds with the output of the physical system, assuming 
both the model and the physical system have been excited with the same set of control inputs. 
Once the model has achieved a satisfactory level of accuracy, a controller can then be built or a 
control scheme can be devised based on that developed model. The performance of the controller 
is generally assessed first via computer simulation and then by testing it on the physical system. 

For systems where the physical system is well-known and models of varying complexity can be 
developed from first principles (i.e., physical laws), simulation can be done with a reasonable 
degree of accuracy. Then, the controller can be tested using computer simulation, and the 
engineering process of revising and testing the design can begin. However, in hydropower, there 
are several factors that combine to make the simulation and validation of control schemes 
difficult. First, developing an accurate higher-order hydraulic model is difficult. Anything 
beyond a basic linear model requires using equations describing open-channel flow, equations 
that are parameterized by the physical characteristics of the river basin in which the hydropower 
system operates. Hence, running an open-channel flow model is expensive from a computational, 
financial, and data perspective. 

This leads to the second problem, wherein the system hydraulics model must be reconciled with 
measurements of system inputs (e.g., flows) and outputs (e.g., forebay elevations). Flow meters 
are notoriously noisy and biased, hence measurements of turbine discharge or inflow cannot be 
completely trusted. Forebay elevation measurements are fairly accurate, but their precision 
cannot be trusted beyond the centimeter level. The changes in forebay elevation from one time 
step to the next (for a simulation with sub-hourly resolution) are thus much smaller than the 
range of precision in the forebay elevation measurement. Hence, there are two types of 
measurements: one cannot be trusted because it could possibly be biased, and the other is of 
limited use because it is noisy. 

Third, and lastly, is the problem of comparing a new control scheme with the historical 
operations of the hydropower cascade or of an alternate control scheme. In order to do that, we 
need assurances that our model reflects what would happen to the state of the hydropower 
system given a certain sequence of control actions. In doing that, we would simulate the system 
using the given control inputs and compare the output to the measured system state. This would 
imply that any observed inaccuracies are the result of an incorrect model. However, if we accept 
the conceit that the model is accurate (or at the very least as good as it can be) and the 



 

3-2 

measurements are inaccurate, then the problem is how to adjust the measured control inputs and 
system states to the hydraulic model. This problem is known as state estimation. 

This section discusses the state estimation procedure we developed. The goal of this procedure is 
to create a simple, effective approach to reconcile noisy, biased discharge measurements with the 
measurements of the true system state (forebay elevation) and the inherent inaccuracy of the 
hydraulic model. As noted before, in the absence of enough data to properly characterize a more 
sophisticated open-channel flow model, we elected to use a linear hydraulic model for both the 
simulation and optimization of the Mid-Columbia system. We assume that measurements of 
forebay elevation are noisy but unbiased, and hence the forebay elevation should, over time, 
reflect the trajectory of the true forebay elevation. We assume that flow measurements (either 
inflow or outflow) are biased and noisy and can only be trusted to the extent that they represent 
the shape of the discharge profile. In other words, if the measured outflow doubles, then it is 
reasonable to expect that the estimated outflow should also (roughly) double. The objective is to 
estimate the flows at various points in the system and then use those flow estimates to create an 
estimated open-loop forebay elevation for each dam. Estimated flow and elevation values should 
track the measured values closely. 

There are two general approaches to state estimation [1]. The first of these is least-squares. This 
procedure entails minimizing the squared residual error between the estimated value and the 
measured value. It is an optimization-based approach. The estimated variables are related to each 
other by a state-space model or something similar. There are two problems with using least-
squares for estimating the flows and forebay elevations in a hydropower system. First, how 
should the objective function be formulated? Each measurement should not be trusted the same, 
but it is not known a priori which measurements are less biased or less noisy. Second, how do 
we deal with the scale of the problem? Estimating only the flows through the seven dams in the 
Mid-Columbia system for a week with 1-minute time resolution would require 70,560 variables. 
Solving such a problem directly is difficult even in the unconstrained case. A hydropower system 
that has strong temporal and spatial coupling only exacerbates the difficulty of computing an 
optimal solution. 

The other approach for state estimation is Kalman filtering. The Kalman filter will derive the 
statistically optimal estimate of the underlying system state from measurements of the system 
inputs and outputs [2]. Kalman filtering is typically employed in cases where the internal system 
state is hidden from the observer and cannot be directly measured. In light of these facts, we 
applied the Kalman filter to a theoretical case where the forebay elevation of a hydropower 
system was known with some certainty and the flow measurements were noisy but unbiased. The 
Kalman filter did an excellent job at estimating both the flows and forebay elevations in the 
system; the computational simplicity of the Kalman filter was also appealing. However, when we 
used the Kalman filter to estimate historical flows using historical measurements of forebay 
elevation (noisy but unbiased) and flows (biased as well as noisy), the Kalman filter did a poor 
job of removing the bias from the flow measurements, and the estimates were erratic and 
(qualitatively) suboptimal. 

Our difficulties implementing those two estimation approaches lead us to seek another solution. 
The overall objective was not to create a statistically or mathematically optimal estimator. 
Rather, we wanted to engineer a functional, simple, and fast algorithm to make all these 
measurements fit together. The remainder of this section describes that engineering process. 
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“Mid-Columbia Hydropower System” introduces the Mid-Columbia hydropower system. “The 
Need for State Estimation” outlines the need and rationale for state estimation in a hydropower 
system. “State Estimation” describes the proposed state estimation procedure. “Overview and 
Results” presents some example results from the Mid-Columbia hydropower system. 
“Conclusion” concludes the section. 

Mid-Columbia Hydropower System 

Our primary research focus is on the coordinated control and optimization of the Mid-Columbia 
hydropower system. The Mid-C consists of seven dams on the Columbia River in Washington: 
two federal dams (Grand Coulee and Chief Joseph) and five municipal dams. The first dam in 
the cascade is Grand Coulee; the last dam in the cascade is Priest Rapids. Figure \ref{fig:map} 
shows a map of the hydropower facilities in the Columbia River Basin, with the seven Mid-C 
dams visible in the middle of the figure. 

 

Figure 3-1 
Map of hydropower installations in the Columbia River Basin (Source: USACE) 

This state estimation procedure was borne from a need to compare the historical operations of 
the Mid-C with the coordinated control scheme that we developed. We were provided with 
turbine discharge and spill measurements, along with readings of forebay elevation. We used 
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data from the USGS for the inflow into the Lake Roosevelt (the reservoir behind Grand Coulee 
Dam). In order to properly compare our proposed control scheme with historical operations, we 
had to be able to simulate the system. Unfortunately, many of the flow measurements are biased 
and disagree with each other. In some cases, the total inflow into a reservoir was several percent 
higher than the outflow from that reservoir. When simulating a system using open-loop 
simulation (i.e., without being able to measure the “true”' state of the physical system), these 
measurements need to be massaged so that the open-loop simulation of the physical system 
matches the responses of the actual physical system. 

This section is focused entirely on the state estimation procedure that takes this historical data 
and estimates a set of estimated turbine discharges and forebay elevations, thus permitting a true 
apples to apples comparison of the proposed coordinated control scheme and the historical 
operations of the Mid-Columbia system. This procedure should be useful to other researchers 
doing similar kinds of hydropower operations and planning work, where the need to do accurate 
backcasting simulations on a computer is required. 

The Need for State Estimation 

In control theory, a linear, time-invariant, discrete-time state space model has the general 
formulation 

 ( 1) ( ) ( )k A k B k  x x u  (3.1) 

where the system has been discretized by the discretization interval kt . The A  and B  matrices 

describe the relationship between the control inputs ( )ku , current system state ( )kx , and future 
system state ( 1)k x . The state-space formulation of control problems is useful because the 
mathematical relationship between the control inputs and changing system state can be analyzed 
and implemented in a transparent manner. Its linearity properties make it ideal for use in an 
optimization-based controller framework (e.g., model predictive control). In a hydropower 
cascade, the system state is generally the forebay elevation or the volume of water in storage. 
The control inputs are the flows at various points in the system. A  and B  reflect how those 
flows affect the water stored at various locations in the system. 

In lieu of analyzing a large, multi-reservoir system in one go, first consider the state space model 
for a single hydropower plant impounding a single reservoir. The system state is represented by 
the forebay elevation ( )x k . The control variables are the reservoir inflow and outflow. The state 
space representation for this model is 

 ( 1) ( ) ( ) ( )k kt t
x k x k r k q k   

 
 (3.2) 

where r  is the inflow, q  is the outflow, and   is the surface area of the reservoir. We make the 
explicit and reasonable assumption that the volume of water in the forebay is linearly related 
with the elevation of the forebay. We also make the assumption that the inflow is known with 
certainty; this assumption is critical to the proposed state estimation procedure. (This process can 
easily be reversed such that the outflow is known with certainty, and the inflow is the unknown 
quantity.) Since we know (and trust) the measurements of forebay elevation ( )x k  and ( 1)x k  , 
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we therefore know three of the four unknowns in (3.2). Since this is an equality constraint, the 
fourth unknown (implied outflow) can be computed as 

 ( ) ( ) ( 1) ( )
k k

q k x k x k r k
t t

 
     (3.3) 

where the implied outflow is denoted by q . Then, there are two “measurements” of outflow: the 
directly measured outflow q  and the outflow q  implied by the measurements of forebay 
elevation and inflow. The problem of state estimation is how to reconcile these two conflicting 
measurements into an estimated outflow q̂ . 

Our approach is based around two guiding principles. First, while the measured outflow is 
biased, noisy, and will probably not satisfy the water equation, it contains information about the 
“shape” of the outflow signal that we want to preserve. Second, the integral of the implied 
outflow signal represents the water balance that the estimated outflow needs to satisfy, but the 
shape of the implied outflow signal is substantially different from the measured outflow signal. 
Hence, while the implied outflow cannot be used directly, its integral can be used to adjust the 
measured outflow such that the water balance is satisfied. These two principles thus inform our 
general state estimation approach: use the implied outflow to debias the measured outflow. This 
will satisfy the water balance equations while also preserving information about turbine ramping. 

To demonstrate how we implement this approach, consider the simple case where there is a 
constant, negative bias in the outflow measurements (e.g., the measured outflow is always one 
kcfs below the actual outflow). In this case, the accumulated discharge of the implied outflow 
would be higher than the accumulated discharge of the measured outflow. This accumulation 
would be proportional to both the bias and how much time has elapsed since the initial system 
state was recorded. In simulation, this would manifest itself in a simulated forebay elevation 
higher than the measured forebay elevation, since less outflow is simulated than what actually 
occurred. 

An example of this scenario is shown in Figure 3-2. The black line is the accumulated discharge 
for the measured outflow assuming a zero-order hold on the discrete outflow measurements, or 

 
1

( ) ( ).
k

k
n

v k t q n


   (3.4) 

The blue line is the accumulated discharge for the implied outflow, or 

 
1

( ) ( ).
k

k
n

v k t q n


   (3.5) 

The values computed in (3.4) and (3.5) are water volumes. Since there was a negative bias in the 
outflow measurement, the blue line is located above the black line. If we call the bias 0q  and 
subtract (3.4) from (3.5), then 
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 (3.6) 

This is a linear function, and is shown as the red line in Figure 3-2. We call this function ( )d k , 
or the “difference function”. It is defined as 

 
1 1

0 0

( ) ( ) ( ) .
k k

k
n n

d k t q n q n
 

 

   
 
   (3.7) 

If ( )d k  is positive, the flow measurements are negatively biased and the outflow should be 
adjusted upwards. If ( )d k  is negative, the flow measurements are positively biased and the 
outflow should be adjusted downwards. Since the summation is from 0 to 1k  , we define 

(0) 0d  . 

 

Figure 3-2 
Schematic illustrating how a biased outflow manifests itself as a differene between the cumulative measured 
discharge and the cumulative implied discharge 

In this contrived example, removing the bias from the outflow measurements is simple 
subtraction. In real applications—even if the difference function was noisy but followed a linear 
trend—we would be best served by fitting a linear regression to the data and using that to remove 
the bias in the measured outflow. In practice, however, the bias value 0q  is not constant. Rather, 

it can fluctuate across the simulation period of interest (days or weeks). The next section steps 
through how we formulated the problem, discusses some of the challenges we encountered, and 
details the solutions we engineered to overcome them. 
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State Estimation 

Estimating the difference function using linear regression 

As discussed previously, a constant bias would result in a linear bias function, which can be 
estimated using a linear regression of the form 

 ˆ ˆ( )d k k  (3.8) 

where one parameter is fitted to the model. There is no intercept parameter because 
ˆ(0) (0) 0d d  . (A non-zero initial value for the difference function would not have any 

physical meaning.) The optimization problem would then be 

    2 2

ˆ ˆ( )
1 1

ˆ ˆmin ( ) ( ) min ( )
K K

d k
k k

d k d k k d k



 

        
   
   (3.9) 

where ( )d k  is defined for all 0, ,k K  . This is an unconstrained, convex, quadratic 
programming problem and can be solved in closed-form. 

To discuss how we improved on this basic regression, we are going to walk through the 
estimation of the inflow into the Grand Coulee forebay. In our system-level state estimation, we 
assume that the turbine discharge from Grand Coulee is the “true” discharge of the system. (In 
practice, any plant could have been chosen, and the state estimation procedure would not 
change.) Hence, we work our way upstream to estimate inflows, and we work our way 
downstream to estimate outflows. Thus, the inflow into the Grand Coulee forebay is the first 
quantity to be estimated. The measured inflow was taken from a USGS river gauge located on 
the Columbia River at the Canadian border [3]. The implied inflow was computed from the 
turbine discharge measurements taken at Grand Coulee and the forebay elevation measurements. 
(As noted before, the procedures for estimating inflow as opposed to outflow are nearly 
identical.) Inflow data was available with 15-minute time resolution and forebay elevation data 
was available with 5-minute time resolution. Turbine discharge data was available with 1-minute 
time resolution, hence all estimation was done on a 1-minute time resolution. The inflow and 
forebay elevation measurements were upsampled using linear interpolation. Data was taken for a 
five-day period in March 2013. 

Figure 3-3 shows two columns of five plots each. The first column of plots shows the function 
ˆ( )d k  (in red) regressed on the true difference function (in black). Previously fit functions are 

shown in grey. The second column of plots shows the derivative of ˆ( )d k , or the estimated bias 
function (i.e., the adjustment made to the measured flow in order to obtain the estimated flow). 
For a linear regression, the estimated bias will be a constant value. For a higher-order regression, 
the estimated bias will change with time. 
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Figure 3-3 
These plots pertain to the estimation of the inflow into the Grand Coulee forebay. The left column of plots 
shows the difference function in black and the fitted difference function in red. The right column shows the 
derivative of the fitted difference function, which can be interpreted as the bias. In order from top to bottom, 
the rows show the results for no correction, linear difference function, linear difference function with water 
balance constraint, cubic spline, and cubic spline with ramping constraint. The knots for the cubic spline 
were located at each 12-hour interval (i.e., the tick marks on the x-axis). 

The first row of data shows the uncorrected difference function. Its corresponding bias function 
is zero. The second row of data shows the difference function approximated using the linear 
regression described in (3.8). Looking at the difference function and its corresponding linear 
regression, we immediately notice two problems. First, the difference function is not linear. We 
are regressing a linear function onto a set of data that is clearly not linear. Second, the difference 
function does not obey the water balance. 

As noted before, the cumulative implied inflow and the cumulative estimated inflow should be 
the same in order for the water balance equation to hold. This problem is illustrated in Figure 
3-4, which shows two columns of five plots each. The first column of plots shows the measured 
forebay elevation (in black), the open-loop forebay elevation using the measured inflow (in 
grey), and the open-loop forebay elevation using the estimated inflow (in red). The open-loop 
forebay elevation is simulated by taking the system state at 0k  , applying the control inputs 
(i.e., inflow and outflow) for 0, , 1k K   , and observing the trajectory of the system state for 

1, ,k K  . In normal operations, there would be feedback on the system state because the 
system state would be measured in real-time. In simulation, those measurements are not 
available, hence we can only rely on open-loop simulation to model our system. 
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Figure 3-4 
These plots pertain to the estimation of the inflow into the Grand Coulee forebay. The left column of plots 
shows the measured forebay elevation in black, the open-loop forebay elevation using the measured inflow in 
grey, and the open-loop forebay elevation using the estimated discharge in red. The right column shows the 
measured inflow in black and the estimated inflow in red. In order from top to bottom, the rows show the 
results for no correction, linear difference function, linear difference function with water balance constraint, 
cubic spline, and cubic spline with ramping constraint. 

The first row of data shows the forebay elevation and inflow when ˆ( ) 0d k   for all k  (i.e., the 
uncorrected case). Looking at the left plot of forebay elevation, the open-loop forebay elevation 
does not track the measured forebay elevation very well, implying that the underlying difference 
function is not linear. As mentioned before, the water balance is not satisfied; if it was, the 
measured forebay and estimated forebay elevations would be identical when k K . Hence, 
there are two problems that need to be addressed. First, how do we enforce the water balance 
constraint? Second, how do we deal with the non-linearity in the difference function? 

Enforcing the water balance constraint 

Addressing the first problem is fairly simple. Since the water balance will only be satisfied when 
ˆ( ) ( )d K d k , then the optimization problem in (3.9) is adjusted to be a constrained optimization 

problem of the form 

  2

ˆ
1

ˆmin ( )
K

k

k d k





  
 
  (3.10) 
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subject to 

 ˆ ˆ( ) ( ).d K K d k   (3.11) 

However, this problem is clearly trivial. Since there is no intercept parameter, there is already an 

implicit constraint that ˆ(0) (0) 0d d  . We added the constraint ˆ ˆ( ) ( )d K K d k  . Since this 
is a linear regression with one parameter, this optimization merely fits a line between (0)d  and 

( )d K . The results of this regression are shown in the third row of Figure 3-3 and Figure 3-4. The 
difference function fit using the above optimization problem is provably inferior to the linear 
regression fit using (3.9). In return for this reduction in accuracy, however, the water balance is 
strictly maintained for the simulation period. 

Accomodating nonlinearity 

Hence, one of the problems is satisfied. In solving that problem, however, an additional issue 
arises: how do we add additional degrees of freedom to our regression such that we are doing 
more than just connecting (0)d  and ( )d K  with a straight line? Luckily, addressing this problem 
will also deal with the previously identified problem of regressing a nonlinear difference 
function. There are multiple ways to do regression with higher-order terms (e.g., fitting a 
quadratic or cubic function, piecewise linear functions, etc.) or explicit nonlinear/nonparametric 
regression (e.g., kernel regression, LOESS, generalized linear models, etc.) [4]. We elected to 
use cubic splines. 

Cubic splines are piecewise cubic functions with continuity and smoothness constraints. To fit a 
cubic spline, N  knots (or breakpoints) are chosen prior to doing the regression. The location of a 
knot is denoted by n . Since the parameter of interest is the discrete-time index variable k , each 

n  will be a time index. Then, a total of 1N   cubic functions are fit to the data, with one cubic 

function defined between each knot. Each data point is then assigned to a particular region, and 
its estimated value is computed using the appropriate cubic function. Smoothness and continuity 
constraints are enforced at each knot (i.e., the function and its first two derivatives are equal at 
each knot). Mathematically, splines can be defined as 

  3 2
3, 2, 1, 0, 1

ˆ ˆ ˆ ˆ( ) ,n n n n n nf x x x x x            (3.12) 

where there are four β’s fit to each region of the regression. Since there are N  knots and 1N   
regions where each cubic function is valid, there are a total of 4 4N   parameters fit to the 
model. It is assumed that 0 0   and 1N K   . 

Using cubic splines, the state estimation optimization problem can then be written 

  2

ˆ
1

ˆmin ( ) ( )
K

k

d k d k




  
 
  (3.13) 

subject to 

 ˆ( ) ( )d k f k  (3.14) 
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 1,0
ˆ ˆ(0) 0d    (3.15) 

 3 2
3, 1 2, 1 1, 1 0, 1

ˆ ˆ ˆ ˆ ˆ( ) ( )N N N Nd K K K K d k            (3.16) 

        3 2
3, 3, 1 2, 2, 1 1, 1, 1 0, 0, 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 1, ,n n n n n n n n n n n n N                        (3.17) 

      2
3, 3, 1 2, 2, 1 1, 1, 1

ˆ ˆ ˆ ˆ ˆ ˆ3 2 0 1, ,n n n n n n n n n N                   (3.18) 

    3, 3, 1 2, 2, 1
ˆ ˆ ˆ ˆ6 2 0 1, ,n n n n n n N             (3.19) 

where (3.14) enforces the behavior of the cubic spline,(3.15) and (3.16) enforce the water 
balance equations, (3.17) enforces the continuity constraint at each knot, and (3.18) and (3.19) 
enforce the smoothness of the first and second derivatives of the cubic spline at each knot [4]. 
Note that this constrained optimization problem is still convex and quadratic. 

Here, then, we return to Figure 3-3 and Figure 3-4. The fourth row in Figure 3-3 shows the 
difference function fit using cubic splines. Knots were placed at 12-hour intervals (i.e., at each 
tick mark). (The results were not particularly sensitive to the position of the knots.) As the left 
plot shows, this regression tracks the underlying difference function while satisfying the water 
balance constraints. This results in substantially more variation in the fitted bias function, 
transitioning from a maximum value of approximately 200 m3/s to a minimum value of 
approximately -250 m3/s. Looking at Figure 3-4, it is clear that these changes do not significantly 
affect the shape of the inflow profile. However, the open-loop forebay elevation computed using 
the inflow estimated from the cubic spline regression does a significantly better tracking of the 
measured forebay elevation, rarely deviating more than a couple of centimeters from the 
measured forebay elevation. This is an excellent result, and it would appear as though we have 
met the original objectives that we set out to achieve with this state estimation algorithm: track 
the measured forebay elevation, maintain the water balance, and preserve the shape of the 
measured flow. 

However, an additional problem appeared when estimating the outflow from Priest Rapids Dam, 
the last hydropower plant in the Mid-Columbia system. Due primarily to fish-related restrictions 
on turbine discharge and spill, Priest Rapids will often operate in modes where its turbine 
discharge profile is relatively constant (i.e., varying no more than 50 m3/s from a particular 
setpoint). Figure 3-5 and Figure 3-6 show the difference functions, forebay elevations, and 
estimated turbine discharges for Priest Rapids Dam. The layout of the plots is identical to what 
was shown previously in Figure 3-3 and Figure 3-4 when estimating the inflow into Grand 
Coulee Dam. For each type of regression, we used the same procedure for all seven hydropower 
plants in the Mid-Columbia. So, for the first row of plots, the inflow into the Priest Rapids 
forebay was the measured outflow from Wanapum Dam upstream. Likewise, in the second row 
of plots, the inflow into the Priest Rapids forebay was the estimated outflow from Wanapum 
Dam, which was estimated using the linear regression procedure described in (3.9), and so on for 
the third, fourth, and fifth rows of plots. This is why the underlying difference function is slightly 
different for each type of regression. 
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Figure 3-5 
These plots pertain to the estimation of the outflow from Priest Rapids Dam. The left column of plots shows 
the difference function in black and the fitted difference function in red. The right column shows the 
derivative of the fitted difference function, which can be interpreted as the bias. In order from top to bottom, 
the rows show the results for no correction, linear difference function, linear difference function with water 
balance constraint, cubic spline, and cubic spline with ramping constraint. The knots for the cubic spline 
were located at each 12-hour interval (i.e., the tick marks on the x-axis). 
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Figure 3-6 
These plots pertain to the estimation of the outflow from Priest Rapids Dam. The left column of plots shows 
the measured forebay elevation in black, the open-loop forebay elevation using the measured outflow in grey, 
and the open-loop forebay elevation using the estimated outflow in red. The right column shows the measured 
outflow in black and the estimated outflow in red. In order from top to bottom, the rows show the results for 
no correction, linear difference function, linear difference function with water balance constraint, cubic 
spline, and cubic spline with ramping constraint. 

Looking at the plots for Priest Rapids, we notice that the performance of the linear models is 
substantially better compared to Grand Coulee Dam. This is because the difference function is 
fairly linear---indicating a constant bias in the outflow measurements---and hence is well-suited 
to the one-parameter linear regression we discussed previously. However, the cubic spline 
presents some unwanted behavior. While the simulated open-loop forebay elevation tracks the 
measured forebay elevation with centimeter precision, the estimated outflow does not look like 
the measured outflow in the slightest. This is because the ramp in the bias signal at the start of 
the simulation period (the right plot in the fourth row of Figure 3-5 is enormous compared the 
fairly flat turbine discharge profile. Clearly, if we intend to analyze how, for example, 
environmental flow regulations on the Mid-Columbia affect the capabilities of the system, it is 
important that the estimated discharge profile is not wildly different from the measured discharge 
profile. However, it should not be necessary for a human to look at each difference function and 
decide whether the fitted function should be a linear function, cubic spline, or something else. 
Whatever regression procedure we elect to use should be adaptable to the circumstances. 
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Accounting for the ramping of the measured outflow 

Our solution to this problem is to constrain the second derivative of the fitted cubic spline. Since 
the bias function is the first derivative of the estimated difference function, this is equivalent to 
constraining the first derivative of the bias function. This prevents the bias function from 
ramping excessively. This naturally leads to a follow-up question: what dictates how much 
ramping should be allowed? It is important that the estimated outflow mimics the profile of the 
measured outflow. Hence, if the measured outflow ramps substantially, the additional ramping 
introduced by the bias function can be fairly large because it will be swamped by the measured 
outflow signal. Likewise, if the measured outflow is fairly flat—as in the case of Priest Rapids 
Dam in this example—then the additional outflow ramping introduced by the bias function 
should be fairly small so as not to transform a flat measured outflow profile into a varying 
estimated outflow profile. Effectively, there should be an additional constraint that ensures that 
the estimated outflow does not look too different from the measured outflow. 

We chose to introduce a constraint that is based on the travel of the measured outflow. Signal 
travel is the sum of the absolute change of the value of the signal over a certain period of time. A 
completely flat signal will thus have zero travel and the amount of signal travel will increase as 
ramping increases. In order to remove the effect that high frequency variability will have on the 
total signal travel, we apply a moving average filter to smooth the measured outflow signal. 
Mathematically, 
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where  min , 30k K k   and  max 1, 30k k  . These limits correspond to a moving average 

window of one hour, since our data has 1-minute time resolution. The size of the moving average 
window and the type of lowpass filter used can change depending on the needs of the particular 
application. 

Next, we can implement a ramping score, which measures the average absolute change in the 
smoothed measured outflow signal. Mathematically, this can be represented by 
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where a  and b  are integers and b a . Then, using this ramping score, the second derivative of 
the difference function (i.e., the first derivative of the bias function) can be constrained using 

 3, 1 2, 1
ˆ ˆ6 2 · ( , ) 1, , 1n n n n ns n N             (3.22) 
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where τ is a user-defined tolerance value. This set of constraints would be added to those in 
(3.14) to (3.19). A smaller value of τ implies that the second derivative of the difference function 
will be more constrained. If τ is zero, then this is identical to the linear regression formulated in 
(3.10) and (3.11), and (3.12) to (3.19). Note that the qualitative interpretation of (3.22) and (3.23) 
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is that the value of the second derivative at each knot location (along with the endpoints) is less 
than the ramping score for the adjacent regions. This allows the constraint to adapt to multiple 
ramping modes in the simulation period (e.g., if the measured outflow is flat for some period of 
time and then variable for some period of time). 

The improvement obtained by adding the constraints (3.22) and (3.23) can be judged by looking 
at the results for Priest Rapids Dam, shown in the fifth row of Figure 3-5 and Figure 3-6. The 
open-loop forebay elevation computed using the estimated outflow tracks the measured forebay 
elevation closely. Additionally, the profile of the estimated outflow is similar to the measured 
outflow. The first derivative of the bias function is close to zero in the part of the simulation 
where the measured outflow is flat (from Hour 0 to Hour 48, approximately), indicating 
constraints (3.22) and (3.23) are functioning as intended. In the region where the measured 
outflow is more variable, the bias function has the freedom to move freely and more accurately 
track the true difference function. 

Overview and Results 

In the previous section, we presented results for Grand Coulee Dam and Priest Rapids Dam in 
order to walk through the logical steps we took to arrive at our final state estimation algorithm. 
This section presents results for the rest of the Mid-Columbia system. Data was taken for the 
same five-day period in March 2013. Forebay elevation was available with 5-minute time 
resolution for each facility. Turbine discharge and spill was available with 1-minute time 
resolution. Natural inflow was taken from USGS gauges on the relevant tributary streams of the 
Mid-Columbia system [3]. Data was upsampled using linear interpolation to obtain forebay 
elevation and natural inflow measurements with 1-minute time resolution. Knots for the cubic 
spline interpolation were placed every 12 hours, such that 1 720  , 2 1440  , and so on. The 

tolerance was chosen to be 410   using the formulation in (3.21), (3.22), and (3.23). 

1. Assume the turbine discharge and spill from Grand Coulee Dam are known. Use the 
objective function (3.13) and constraints (3.14) to (3.19) and (3.22) to (3.23) to estimate 
the inflow into the Grand Coulee forebay. 

2. Assume the turbine discharge and spill from Grand Coulee, the natural inflow into the 
Chief Joseph forebay, and the spill from Chief Joseph Dam are known. Then, estimate 
the turbine discharge from Chief Joseph Dam. 

3. Assume the estimated turbine discharge and measured spill from Chief Joseph Dam, the 
natural inflow into the Wells forebay, and the spill from Wells Dam are known. Then, 
estimate the turbine discharge from Wells Dam. 

4. Assume the estimated turbine discharge and measured spill from Wells Dam, the natural 
inflow into the Rocky Reach forebay, and the spill from Rocky Reach Dam are known. 
Then, estimate the turbine discharge from Rocky Reach Dam. 

5. Assume the estimated turbine discharge and measured spill from Rocky Reach Dam, the 
natural inflow into the Rock Island forebay, and the spill from Rock Island Dam are 
known. Then, estimate the turbine discharge from Rock Island Dam. 
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6. Assume the estimated turbine discharge and measured spill from Rock Island Dam, the 
natural inflow into the Wanapum forebay, and the spill from Rock Island Dam are 
known. Then, estimate the turbine discharge from Wanapum Dam. 

7. Assume the estimated turbine discharge and measured spill from Wanapum Dam, the 
natural inflow into the Priest Rapids forebay, and the spill from Priest Rapids Dam are 
known. Then, estimate the turbine discharge from Priest Rapids Dam. 

Hence, we are estimating seven unknown quantities: the inflow into the Grand Coulee forebay 
and the turbine discharge from the six downstream dams. The size of each optimization problem 
is 40 variables and 49 constraints. Each optimization problem is solved using the interior point 
solver knitro and took approximately 10 milliseconds to solve. Solving the optimization 
problem portion of this state estimation procedure is not computationally intensive, especially 
when compared to an equivalent least-squares procedure that would have tens of thousands of 
variables and constraints. Such a problem would have serious computational requirements, both 
from a computing power perspective (i.e., the time it takes to solve such a large problem to an 
optimal solution) and from a numerical perspective (i.e., writing or using a solver that can 
reliably find the true optimal solution of such a large and highly constrained problem). 

The results of this state estimation procedure for the entire Mid-Columbia system are shown in 
Figure 3-7 (difference function), Figure 3-8 (forebay elevation), and Figure 3-9 (estimated inflow 
or outflow). Qualitatively, the cubic spline interpolation tracks the underlying dynamics of the 
difference function closely. This manifests itself in how well the open-loop forebay elevations 
simulated using the estimated inflow or outflow track the measured forebay elevation. In most 
cases, the simulated forebay elevation does not deviate more than a few centimeters from the 
measured forebay elevation. And, as can be seen from looking at the plots of estimated and 
measured inflow and outflow, the estimated flows look virtually identical to the measured flows. 
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Figure 3-7 
These plots shows the difference function in black and the fitted difference function in red using the 
constrained cubic spline estimation procedure for each of the seven estimated quantities. 
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Figure 3-8 
These plots show the measured forebay elevation in black, the open-loop forebay elevation using the 
measured flow in grey, and the open-loop forebay elevation using the estimated flow in red for each of the 
seven estimated quantities. 
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Figure 3-9 
These plots show the measured flow in black and the estimated flow in red for each of the seven estimated 
flows. 

Conclusion 

This section presented an algorithm for estimating the flows in a hydropower system such that an 
open-loop simulation of the system using those estimated flows will yield (approximately) the 
measured forebay elevations. The flows are the primary control variables and the forebay 
elevations are the primary state variables of any hydropower system model. They capture the 
dynamic movement of water through the system and the static location of water in the system. 
The most difficult part of doing state estimation for a hydropower cascade is accounting for the 
tight temporal and spatial coupling of forebay elevation and flow. The goal of our procedure was 
to estimate these values using a heuristic algorithm where previously well-known methods had 
failed: least-squares because the problem was both too large and too poorly defined, and Kalman 
filtering because the flow measurements were biased. Our algorithm achieves the stated 
objectives quickly and accurately. While we make no claims about the statistical optimality of 
this estimation procedure, its flexibility and practical accuracy should suffice for applications in 
which open-loop simulations are necessary. We have implemented this state estimation 
procedure as an integral component of our own research on the optimal coordinated control of 
cascaded hydropower systems (specifically the Mid-Columbia), and it has proven to be effective. 
Additional steps can be taken to estimate other values of interest, including the tailrace elevation 
and power production from each hydropower plant, but the complexity of estimating those 
values is significantly reduced because the temporal and spatial coupling is minimal or non-
existant. 
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