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There is little general modeling research available for evaluating new PSH proposed for devel-

opment from an economic point of view. This modeling framework enables the analyst to evaluate

hypothetical pumped-storage within the generation fleet that it would be built in with limited data

requirements on the front end. Using shortest paths optimization and a k-shortest paths tech-

nique, a simulation model is developed that demonstrates the potential effects of storage on a

thermal generation system. It is shown that these simulation results reproduce analytical eco-

nomic efficiency conditions, which gives specific insight to the sensitivity of PSH to design choices

and wind statistics. It is shown that system marginal cost and total cost can be reduced through

operations policies. These results also inform the need for additional data and detailed modeling

in the feasibility stages of design.



Contents

I Introduction 1

II ARMA-GARCH Model to Characterize Aggregate Wind Power 11

III Cost Minimization of Power Generation with Intermittent Resources and Energy Storage 49

4



List of Tables

1 GARCH parameters as implemented in R package rugarch. . . . . . . . . . . . . 19

2 Log transformation of the seasonal data set reduced the trend in the raw data com-

parably to differencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 sGARCH and eGARCH were compared in the initial steps of model selection. . . . . 26

4 Results of the initial models. eGARCH(1,1) with variance regressors was selected

to continue with based on AIC, sign bias, and relative improvement in Nyblom pa-

rameter stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 The need for differencing is clear in these comparisons, as well as providing evi-

dence that the natural log transformation improves the ability of the model to cap-

ture the more extreme variations in hourly data. The data set summer refers to the

hourly data for the summer season described above. . . . . . . . . . . . . . . . . . . 28

6 For each data set, summer and winter, one or more reduced models performed as

well as the model based on eGARCH(2,1)ARMA(24,1), but achieved a lower AIC

and improved parameter significance. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 A rolling forecast over the last season of historical data was performed on each of

the models selected in the previous section. The detailed forecast specifications

can be found in Appendix B - Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Summary of notation used in the cost minimization . . . . . . . . . . . . . . . . . . . 62

9 Summary of operational and physical constraints . . . . . . . . . . . . . . . . . . . . 67

10 Generation parameters used to calculate the conditional probabilities on demand:

Pr(Zi−1 < D≤ Zi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5



List of Figures

1 Net Load exhibits the periodicity of daily load while absorbing the irregular patterns

of wind power generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The residuals of the net load data are correlated to at least four lags, suggesting

the appropriate application of GARCH innovations. The data modeled here are the

squared residuals of the entire (non-seasonalized) net load time series modeled as

an ARMA(24,1) process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Both summer and winter net load values are skewed to the right compared to the

normal distribution and exhibit slightly heavier left tails, and summer and winter are

decidedly different from each other. (The normal curve in this case is overlayed for

general reference and is only linked to the data in that the mean of the reference

curve is equal to the sample mean.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Emperical CDF of net load data by seasons. Winter net load values distributed more

widely over the range of net load values due to a high winter peak in the month of

January. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Wind patterns are more regular and more frequently reach full capacity in summer

than in winter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 The variance in the residuals, calculated here by season, trends upwards through-

out the original sample. The external regressor, wind penetration, explains some of

this variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Wind penetration increases over the study period, and is lower in winter than sum-

mer due to higher peak load and lower wind outputs. . . . . . . . . . . . . . . . . . . 24

8 The autocorrelation function and partical autocorrelation function of the seasonal

data indicate the need for both AR terms and MA terms. . . . . . . . . . . . . . . . . 27

9 The CDF of simulated values confirm that the low-pass filter used to de-mean the

data preserved the statistics of the original simulation for the summer data set (left)

and the winter data set (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 The innovations in the summer (left) and winter (right) simulations are skewed to-

ward the tails of the distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6



11 A comparison of a portion of the simulated series and the original data shows that

the simulation successfully captures high and low volatility periods, but the anti-

correlation between series value and local volatility is not apparent. This feature

becomes apparent when confidence intervals are added to the plot (see Figure 12). 33

12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 The generation supply curve is shifted to the right, representing an increase in avail-

able generation, where generation from storage enters the supply merit order. The

entire supply curve is shifted to the left when pumping to storage effectively removes

generation from the supply curve and results in an increased marginal price at the

origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

14 Simulated daily net load scaled to BPA forecasted monthly loads with 98% and 50%

confidence intervals. The bottom frame is a sample of the data from which the

simulated data was generated for comparison. . . . . . . . . . . . . . . . . . . . . . 72

15 Simplified supply curves used in the model calculation, developed using BPA data.

[2010 Rate Case, EIA, 6th Power Plan] . . . . . . . . . . . . . . . . . . . . . . . . . 73

16 Power quantities over simulation period, assuming 10 MW installed pump/generator

capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

17 Time series of KKT multipliers associated with energy arbitrage and pump/generator

capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Part I

Introduction

Pumped storage hydropower (PSH) is an integral part of the energy grid worldwide and is con-

sidered to be an important part of a grid-scale renewable energy scheme [Carrasco et al., 2006;

Ibrahim et al., 2006; Levine 2003]. Developers faced with wind-balancing challenges must provide

sufficent generation and energy reserves to offset the natural and unpredictable fluctuations in

wind and solar energy generation. One strategy is to set aside conventional generators, which

may have to operate off of their best efficiency point (BEP), to provide this reserve capacity. The

drawbacks to this approach are two-fold. First, the partially loaded generators involved often

experience increased fuel and maintenance costs. Second, generators can only ramp down to

minimum power output. In regions with regulatory penalties for shedding wind generation when

it is not needed, this minimum generation level can lead to oversupply situations. The value of

demand response in addition to turning off conventional generators can be quite high during these

times.

PSH is uniquely suited to solving both these drawbacks. Pump/turbines used for PSH are capa-

ble of fast ramping with a relatively wide operating range, making them suitable for balancing wind

power where conventional generators may not be. During times of oversupply, pump/turbines can

provide demand response, which avoids costly shutdowns of both wind turbines and conventional

thermal generators. To make development of PSH feasible in sufficient quantities to complement

renewable energy integration, the economics of pumped storage must be better understood, par-

ticularly for application during the feasibility stage of development. The developer must know two

things about how PSH will interact with the production system. First, how does the timing and

variability of wind create a need for load response or peak shaping? Second, how does PSH

development affect system cost and therefore the economics of adding storage capacity?

To understand how PSH can benefit the grid, I look at the costs associated with storage in

three ways. To begin with, a detailed look at the variability of intermittent power generation helps

to characterize the demand conditions under which pumped storage development and operating

decisions are being made. I make the first application of GARCH regression analysis to aggre-
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gated wind power. I suggest using the changes in net load variance over time to better understand

the role storage plays in mitigating the impact of renewable generation on the power system. Next

I use the economic efficiency conditions of a system with intermittent generation and storage to

develop relationships between production marginal cost and storage decisions and discuss the

intertemporal relationships among demand, storage decisions, and intermittent generation. These

economic calculations are the first to include intermittent generation with storage and to explicitly

characterize the interaction among storage capacities, storage decisions, and costs. Finally, I use

a dynamic simulation of pumped storage operations, given net load and realistic operating con-

straints, to more finely detail the effect of storage decisions on system cost. I use the GARCH

model to implement a two-stage decision-making model based on rolling forecasts and show how

a system with high variability takes advantage of PSH.

Pumped Storage Modeling

As of 2009, there were 300 PSH plants worldwide, with an installed generation capacity of 127

GW [Ingram, 2010]. Development of PSH originally occurred alongside inflexible nuclear and

coal generators for the purpose of providing flexibility and peaking power. Recent interest in the

development of green energy, the implementation of Renewable Portfolio Standards (RPS), and

market liberalization in the United States and abroad have spurred new interest in PSH [Yang,

2011]. Europe catalogs 7400 MW of proposed PSH, 2014 MW of which is in Switzerland [Deane,

2010]. In the United States, 39 preliminary permits for PSH were filed between 2005 and 2010,

for a total of 33 GW of new pumped storage [Hadjerioua et al., 2011]. Preliminary permits are

not construction permits and only give the holder priority rights to a site for three years while

preliminary studies are being conducted. Variability in energy supply, volatility in energy markets,

and overall energy security are reasons cited by European developers for their interest in PSH

[Deane, 2010; Black and Strbac, 2007]. North American developers show interest in building

pumped storage to mitigate wind variability as well as for water resource purposes including water

storage, in-stream flow augmentation, water treatment, and water quality mitigation [Yang, 2011;

BPA, 2010; Benitez et al., 2008].

PSH studies often calculate the value of a proposed PSH development based on historical
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prices and hypothetical operating policies. PSH models are typically tailored to a specific context.

Pumped storage is modeled on time scales ranging from a monthly or seasonal reservoir model

perspective [Liu et al., 2011; Tilmant et al., 2008; Tue et al., 2008] to hourly unit commitment

models [Taylor et al., 2012; Hadjerioua et al., 2011; Olivares, 2008]. Most reservoir operations

models include hedging rules that require multiple-stage decision making [Zhao et al., 2011; Tu

et al., 2008]. Power operations models, which are concerned with short planning horizons, are

solved on a sub-hourly timestep, as in Wang and Liu [2012].

There is a lack of general modeling of PSH. PSH models are typically studied based on re-

gional grid assumptions [Anagnostopoulos and Papantonis, 2008; Garcia-Gonzalez et al., 2008;

Bueno and Carta, 2005a, 2005b], and they focus on small scale wind/hydro coupling (see also

Castronuovo and Lopes [2004]). The market context in PSH models varies. Some use statistical

simulations based on historic energy prices [Wang and Liu, 2012; Garcia-Gonzalez et al., 2008;

Katsaprakak et al., 2008] while others make direct use of historic energy price (Bueno and Carta

2005a, 2005b). Real options are studied by Hedman and Sheble [2006] and Reuter et al. [2012].

A few models study ancillary services pricing, under the assumption that storage is available.

Ancillary services pricing is typically calculated based on power flow and unit commitment models

[Lamadrid and Mount, 2012; Li and Shahidehpour, 2005; Wu et al., 2004]. In contrast, Hadjerioua

et al. [2011] make direct use of historic ancillary prices.

These models typically leave out one or more vital characteristics of PSH. The uncertainty

in planning and operating pumped storage and the effect PSH may have on the grid system are

hinderances to developing an asset that is so capital intensive. My literature review includes a

number of modeling papers, each of which focuses on specific aspects of storage. The following

sections list these papers and their contributions. An effort to unify these research approaches is

the logical next step in understanding the role of PSH in the energy economy.

Capacity

Ambec and Crampes [2012] studied the efficient entry of renewables into the energy market from

the central planner’s perspective. The model makes simplifying assumptions regarding the proba-

bility of wind generation, min/max levels of deployed generation, and pricing. The model incorpo-
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rates long-term with short-term optimization and begins to address the overall generation mix, as

well as implications for pricing over the long term. However, energy storage technologies are not

included in the generation mix and variable energy is assumed to be stationary. The ability of PSH

to provide demand response and the time-averaged operating costs of PSH are not addressed.

Sizing of PSH is also addressed using detailed optimization/simulation models of coupled wind-

hydro systems. Anagnostopoulos and Papantonis [2008] and Bueno and Carta [2005a, 2005b]

develop detailed models including European energy tariffs and market and wind data. This ap-

proach varies from general economic modeling by capturing real-time fluctuations in wind power

output. They show how such modeling efforts can be useful for optimizing size, sensitivity experi-

ments, and multi-objective optimization. The power systems are very specific to islanded systems

and models address a vertically integrated power producer’s objectives. The grid descriptions and

market context make their models inapplicable to many potential storage applications.

Uncertainty

PSH has a design life of 30 years or more and a construction horizon of up to 10 years. The

conditions under which a pumped storage is built today will change, and the nature of that change

is unknown. Changes in regulatory constraints, market conditions, and grid conditions all affect

the way the grid is operated. It is vital to understand these effects more thoroughly.

Reservoir optimization models are often considered to be multistage decisions. Either long-

term rule curves or hedging rules are developed using forecasts or real-time decisions are made

based on multiple simulated realizations of the stochastic processes involved. Zhao et al. [2011]

describe the development of economic optimality conditions for reservoir operations under hydro-

logic uncertainty using hedging rules. Alternatively, Tilmant et al. [2008] describe the optimal

operation of a system of reservoirs incorporating hydrologic uncertainty using a stochastic dual

dynamic program, which also provides marginal benefit data on five different water allocation ben-

efits.

Wang and Liu [2012] resolve the hydropower reservoir problem into multiple time scales to

address forecasting error and then used dynamic programming to optimize hydropower reservoir

operations over time. Chao [2012] modeled statistical uncertainty and defined the efficiency con-
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ditions for generating and pricing power. None of these models includes energy storage as an

economic function.

Variability

Closely related to the issue of uncertainty is variability. Variability is the stochastic fluctuations in

power generated by intermittent power resources, such as wind power. The way that intermittent

energy production has affected grid operations and the need for reserves is under investigation.

Lamadrid and Mount [2012] examine ramping costs, and Wu et al. [2004] calculate ancillary ser-

vices prices using optimal flow models. Taylor et al. [2012] use inventory control modeling to

approach the same result. Even when simplified, these models are quite complex, both theoreti-

cally and computationally. Their results must be interpreted in the appropriate market context and

simplified for the purpose of making investment planning decisions.

In Strbac et al. [2007] and Black and Strbac [2007] the relative size of installed wind to installed

storage capacity was examined for the case of Great Britain using an hourly time step simulation

model. Methods for efficiently simulating the wind/demand time series were developed in Sturt

and Strbac [2011a, 2011b]. Their analysis is narrow in application and should be examined for

usefulness in a larger grid context.

Economic Viability

The majority of models used in economics and engineering are profit maximization models over

a given period. Hadjerioua et al. [2011] modeled the profit potential of two PSH facilities for

Oak Ridge National Lab (ORNL), based on energy arbitrage, peaking, and reserve capacity. This

conveniently transparent model includes reserve capacity on a relatively small, hourly time step.

However, the model was entirely deterministic, having been based on one year of actual prices

in specific markets. The authors note that the results are the upper bound on potential profit.

They also suggest the actual market prices need to be revisited because they were established

based on the marginal development cost of new thermal energy, which is significantly cheaper

than new energy storage. Similar models are developed as operations models, utilizing sub-hourly

time steps and complex wind forecasts (e.g., Wang and Liu, [2012]). Such operations models do
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not take a long view toward investment but by reducing some of the computational complexity

could be adapted to long-term analysis. Any such model will need to include stochastic price and

demand inputs and, as suggested by the ORNL analysis [Hadjerioua et al., 2011], be adapted to

endogenously determined ancillary services prices.

Economist Pindyck [2002] and colleague Balikcioglu [2011] solve the profit optimization prob-

lem to determine the timing and level of resource allocations, a model with relevance to PSH

investment and planning. Horsley and Wrobel [2002] develop a profit-maximization model to value

the energy storage potential of pumped storage, which they view as a simplified version of con-

ventional hydropower. Horsley and Wrobel [2007] expand the model to include hydrologic inputs.

Taylor et al. [2008] also assign an economic value to the stored water, using their inventory-control

approach to maximize profit. These models approach the question of how much storage and when

but need to be adapted to the market conditions of interest.

Goals and Objectives

The overall goal of this research is to develop a generic pumped storage operations model that

provides insight into optimal design choices which can be used for improved evaluation of PSH

projects during the planning phase. The objectives required to complete this research goal are the

following:

1. Model net load using GARCH in a way that preserves heteroscedasticity and nonstationarity

for use in planning models.

2. Demonstrate the effect of PSH on system cost, using the GARCH model for net load and the

unit commitment model for capacity decisions.

This paper is unique because of its effort to challenge fundamental assumptions that are made

regarding pumped storage hydropower, namely that the value of PSH is based only upon energy

arbitrage and that the conditions under which that value is derived are stationary.

This new model achieves these innovations:

• The model explicitly calculates the time-dependent parameterization of wind/load profiles in

a novel way using a GARCH model rather than adaptations of autoregressive and autore-
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gressive moving average models. Periodicity of both variance in innovations and mean net

load are preserved by the GARCH model and it is successfully applied to the simulation in

Part IV.

• The cost-minimization model provides an estimate as to how changing market conditions

affect the value of a PSH project by developing analytical expressions rather than numerical

simulations for the value of energy storage.

I show that the interaction between general grid-level parameters - particularly the availability of

intermediate thermal generation - are sensitive to increasing variability on the net load profile. The

optimal pump/storage cycle length is dependent on the relative installed wind capacity and the

temporal wind distribution. A given pumped storage reservoir capacity can serve a range of wind

generation balancing needs with a 5-10% potential decrease in system variable costs.

The rest of this dissertation is organized as three separate manuscripts in preparation for

submission to the appropriate journal. Part II is a detailed analyis of the statistics of net load in

BPA. Part III is a detailed report on the economic calculations that incorporate net load data from

Part II and inform storage design decisions that could be utilized in a detailed unit commitment

model or engineering design.
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Part II

ARMA-GARCH Model to Characterize

Aggregate Wind Power
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With wind generation levels increasing around the world, energy producers and researchers

are developing methodologies of forecasting wind power and integrating wind generation into the

electricity generation system [Foley et al., 2012; Wang et al., 2011; Hodge and Milligan, 2011; So-

man et al., 2010]. The economics of sustainable wind power production require better wind power

forecasts for wind and reserve generation scheduling. Wind forecasting research highlights the

need for realistic time series of wind power for dynamic simulation models and analytic stochastic

process models. Energy and generation reserves for the mitigation of wind variability are allocated

in various ways based on the standard deviation of wind production, historical forecast error, and

net-load quantiles [Holttinen et al., 2013; Mauch et al., 2013; Ela et al., 2010; Black and Strbac,

2007]. Thus, in generation and reserve scheduling, it is important to be able to model informa-

tion about not only the mean but the variability in wind power caused by wind turbulence. The

generalized autoregressive conditional heteroscedasticity (GARCH) model presented in this pa-

per describes the statistics of net load in a way that enables the simulation of historic timeseries

for Monte Carlo simulations or quantile-based forward decision making. This work represents the

first time wind power has been modeled with an autoregressive moving average (ARMA) mean

process with GARCH innovations.

The importance of wind power statistics to system operations has resulted in an extensive

body of research on the statistics of wind speed and direction as in input to wind power models. It

is widely recognized in literature that wind processes are both non-stationary and heteroscedas-

tic although the attempts to produce ensemble systems are often biased and uncalibrated [Tho-

rarindottir and Gneiting, 2010]. Approaches have varied considerably as researchers attempt to

account for local conditions. Models for wind speed have been developed based on autoregres-

sive (AR) and autoregressive moving average (ARMA) models, Markov switching models, spectral

methods, and neurological methods [Ailliot and Monbet 2012; Pinson and Madsen 2012; Sturt

and Strbac 2011b; Lei et al., 2009; and Sfetsos 2000]. Because of the non-stationarity of wind

patterns, the linear models such as AR must be adapted to successfully model the turbulence or

heteroscedasticity of wind speed. Huang and Chulabi [1995] fitted their AR wind speed model with

time-varying parameters, effectively modeling heteroscedasticity by allowing the parameterization

of the mean process itself to be time-varying.

The time dependence of the variance in stochastic wind speed processes continues to be
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problematic for linear models with stationary variance processes, so GARCH models have been

studied widely for modeling wind speeds for the purpose of directly modeling heteroscedasticity by

means of the residual series. Tol [1997] proposed a gamma GARCH model to simulate daily wind

speed near Shearwater, Canada. Liu et al. [2011] examined 10 GARCH model structures on 7

years of hourly data from a Colorado site, concluding that no one model was superior for modeling

wind speeds at all heights tested. GARCH models generally outperform other statistical wind

models in terms of ease of implementation and simulating the periods of calm and high volatility

that characterize wind speeds [Liu et al., 2012; Jeon and Taylor, 2012; Jiang et al., 2012; Tan,

2010].

However, wind speed models must be transformed by complex functions, which are often

stochastic themselves, to be used in power simulations. Thus, linear regression models of wind

power are tested in Chen et al. [2010] and Sturt and Strbac [2011a, 2011b]. The time-varying

parameters are dealt with by fitting models seasonally (by hour of the day, month, or season of the

year). Lau and McSharry [2010] modeled the the changing variance in wind power directly using

an ARMA-GARCH model fitted to wind power data transformed to follow the normal distribution.

Trombe et al. [2012] adapted a Markov switching wind power model with GARCH innovations for

simulation of wind variability on a very short time scales.

The objective of this chapter is to develop a GARCH wind power model that preserves het-

eroscedasticity and nonstationarity for hourly simulation useful for long-term operations simula-

tions. The wind power data for BPA are here aggregated with total load to create a historical

net-load timeseries over the entire period of operation of the BPA wind fleet. The variability of

the resulting load curve is modeled using an asymmetric GARCH model. The economic model

in Part III uses the simulated net load statistics to calculate optimal storage capacity investments

and deployments, and the model developed in this chapter is used in Part IV to simulate net load

scenarios to be used in a stochastic unit commitment simulation.
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GARCH Models - Model selection

Data Introduction

BPA Balancing Authority (BPA) manages the generation and transmission needs over a region

that includes the states of Washington, Oregon, Idaho, and portions of five other states. It is the

responsibility of BPA to schedule and dispatch both generation and transmission to meet electricty

demand within the balancing area along with scheduled energy exports. The amount of wind

generation included in the generation fleet within the balancing area has increased from 250 MW

in 2005 to 4515 MW in 2013 [BPA Wind, 2013], and has resulted in a number of challenges,

including oversupply conditions when high wind conditions coincide with peak runoff conditions

that force the hydropower system to its maximum output [BPA, 2013]. The data used for this model

is historical five-minute average power generation and load data for the period 2007 through the

present made available by BPA at BPA Wind [2013].

Wind power is described as “must take” energy based on regulatory constraints, and while it is

schedulable within a margin of error in the short term, it is neither predictable nor dispatchable like

conventional generation. Thus, wind generation is not a decision in a unit commitment problem, but

more of an input in the same way that load is an input. Given this generalization, wind generation

and system load are aggregated into a net load time series, defined to be load−wind generation.

The resulting time series exhibits some of the noisiness of wind power, which is largely random

and only very loosely correlated with time of day, while retaining the general periodicity of electricity

demand. (See Figure 1.)

The proposed net load model employs a type of GARCH model, which was first developed first

by Engle [1982] and generalized by Bollerslev [1986] to describe financial markets. The motivation

for developing GARCH was the observation that certain financial market events created periods of

volatility - clusters of large changes interspersed with periods of relatively small changes. Standard

regression models like autoregressive (AR) or autoregressive moving-average (ARMA) models

can be fitted to timeseries data and the stochastic innovations or residuals are modeled as a white

noise process, which is serially uncorrelated. However, as in the case of financial timeseries, the

residuals of a GARCH process are correlated because large changes in returns tend to follow

large changes in returns. Bauwens et al. [2012] describes the autocorrelation coefficients of the
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Figure 1: Net Load exhibits the periodicity of daily load while absorbing the irregular patterns of
wind power generation.

squared residuals of a GARCH process as starting at a relatively small value of approximately 0.2

and slowly decreasing at increasing lags (see Figure 2). As a consequence of this correlation, the

distribution of financial returns tends to be leptokurtotic - that is, the distribution of financial returns

tends to have heavier tails and more mass at center than the normal distribution.

Net power demand (net load) is influenced by processes that are localized in time that create

volatility clusters similar in structure to those found in financial markets. Of primary importance

are meteorological processes such as sunrise and sunset, weather fronts, and storm systems.

These micro processes create periods of higher winds and greater wind turbulence interspersed

with periods of relative calm. Additional volatility is introduced into the wind power time series by

the fact that wind turbines have physical cut-off speeds. During periods of high wind speeds, this

cut-off speed may be exceeded. The turbine has safety mechanisms that disengage the generator

and reduce its power output from maximum to zero when cut-off speed is exceeded. As a result,

the distribution of net load data is skewed and leptokurtotic, suggesting the appropriate application

of GARCH models to the data (Figure 3).

Aggregating the fleet of wind turbines with power demand has a smoothing effect on wind

volatility so that minute-to-minute fluctuations have less impact on net demand and thus operating

decisions, which approximates the reality of a grid-scale balancing procedure. In real-time, minute-

to-minute balancing decisions are automated and operate on energy reserves set aside for that

purpose. For the purposes of a long-term planning model, hourly variability is sufficient to describe
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Figure 2: The residuals of the net load data are correlated to at least four lags, suggesting the
appropriate application of GARCH innovations. The data modeled here are the squared residuals
of the entire (non-seasonalized) net load time series modeled as an ARMA(24,1) process.

Figure 3: Both summer and winter net load values are skewed to the right compared to the normal
distribution and exhibit slightly heavier left tails, and summer and winter are decidedly different
from each other. (The normal curve in this case is overlayed for general reference and is only
linked to the data in that the mean of the reference curve is equal to the sample mean.)
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the operating potential of a proposed facility.

GARCH Models - General

The model used to fit the net load time series consists of a parametric mean process with a

GARCH process for the series residuals. A typical GARCH model can be expressed as

yt −µt = εt = σtzt (1)

where t represents the current timestep, yt is the series value, εt is the series innovation, µt is the

conditional series mean at time t, σt is the square root of the conditional variance of the series,

and the series {zi} is independently and identically distributed (i.i.d.) on a standardized conditional

distribution. The mean process is commonly specifed as an ARMA model with general form

yt = µ +
p

∑
i=1

φiyt−i +
q

∑
j=1

θ jεt− j + εt (2)

where p is the AR order (the number of lagged series value terms), q is the moving average (MA)

order (the number of lagged error terms), µ is a constant, φ and θ are the AR and MA coefficients

respectively, and i and j are the lag values. The number of lags taken into account are selected

during model specification, and an ARMA model with p AR terms and q MA terms is specified as

ARMA(p,q). When p = 0, the model reduces to a moving average model, MA(q), and when q = 0

the model reduces to an AR(p) model. The order of the mean process is selected with guidance

from the autocorrelation and partial autocorrelation functions as described below.

Instead of specifying a white noise process for the innovations εt in equation 2, GARCH models

allow εt to have a changing variance with time such that εt =σtzt . σ2
t is thus the conditional variance

of the process. Volatility is the descriptive term of this conditional variance. σ2
t is conditioned on

the square of the error terms, εt , and the variances, σ2
t , of previous time steps. The GARCH

model is then specified as a parametric regression model, the most common of which is standard

GARCH, denoted sGARCH(k,l):

σ
2
t = (ω +

m

∑
j=1

ζ jv jt)+
k

∑
i=1

φiσ
2
t−i +

l

∑
j=1

θiε
2
t− j (3)
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where ω,φi,θi are constants, σ2
t−k is the conditional variance observed k timesteps back, and

εt− j is the residual observed j timesteps back. In the sGARCH specification, the constants are

constrained such that µ0 > 0, φi ≥ 0, θi ≥ 0 [Bauwens et al., 2012]. The persistence of the model,

P = ∑i φi +∑ j θ j, describes how far into the future conditional variance at time t continues to have

influence on conditional variance. GARCH volatility typically dies off exponentially, with a exponent

value P < 1. If P = 1, the influence of conditional variance does not die off and persists to t = ∞,

causing the variance to blow up. To ensure stationarity, P < 1. When the persistence of a GARCH

model is nearly 1, additional explanatory data is often useful. When available, this additional data

can be regressed on the GARCH equation where ζ j are the regression parameters and ν jt are the

data points.

sGARCH is a linear combination of previous error terms and conditional variances, but in

some processes the non-linear components are significant. Non-linear GARCH models include

non-linear GARCH (NGARCH), quadratic GARCH (QGARCH), and Glosten-Jagannathan-Runkle

GARCH (GJRGARCH). A brief description of these models is included in the Appendix A. but they

are not discussed in detail here.

The constraints on the constants in the sGARCH formulation ensure that the resulting distri-

bution of residuals is symmetric. However, many series are not symmetric, and there are two

mathematical sources of asymmetry. In the first case, when the autocorrelation of the residuals is

not symmetric, the conditional variance depends on both the size and sign of the previous previ-

ous. Asymmetric GARCH models include terms that account for sign effects, including NGARCH,

QGARCH and GJRGARCH. Exponential GARCH (eGARCH) was developed by Nelson [1991]

specifically citing the restrictions on sGARCH parameters as being too restrictive. In addition to

sign effects, the eGARCH γ term is considered to represent the presence of leverage in the data,

or the size effect, which is the presence of large changes following large changes, and conversely,

small changes following small changes. eGARCH is commonly used for asymmetric processes

and was shown by Liu et al. [2011] to work quite well for wind speeds. Since the net load data

seems to exhibit assymetry and visually exhibits clusters of high volatility followed by clusters of low

volatility, eGARCH was chosen to test against sGARCH. The formal definition of an eGARCH(k,l)

process is
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ARMA GARCH
Regression Intercept µ ω intercept constant

Regression Parameters φi, ari - AR terms αi ARCH terms (ε2
t−i) for sGARCH

αi sign parameter (zt−i) for eGARCH
θi, mai- MA terms βi GARCH terms (σ2

t−i)
γi eGARCH size parameter

External Regressor Parameters ζi vxreg - external variance regressors
Conditional Distribution ξ skew

ν shape

Table 1: GARCH parameters as implemented in R package rugarch.

loge(σ
2
t ) = (ω +

m

∑
j=1

ζ jv jt)+
k

∑
i=1

βilog(σ2
t−i)+

l

∑
j=1

(α jzt− j + γ j[|zt− j|−E|zt− j|]), (4)

zt =
εt√
σ2

, (5)

where E is the expectation operator. Unlike sGARCH, there is no sign restriction on the constants

α j and β j. α j is the constant that captures the sign effect and γ j captures the size effect. Persis-

tence here is defined as P = ∑ j β j and must be less than one for stationarity [Ghalanos, 2013].

The second source of asymmetry is the distribution of the random variable zt . By definition, zt is

i.i.d. on a standardized pdf F (0,1). Hansen [1994] developed the skewed Student’s t distribution

for application to leptokurtotic series. Bauwens et al. [2012] suggests asymmetry in the GARCH

residuals is necessary to ensure asymmetry in the unconditional distribution. The hypothesis that

an eGARCH model with a skewed conditional distribution is capable of describing the assymetry,

sign-dependence, and non-linearities of wind power processes is tested in the following sections.

Model Selection and Diagnosis

The regression models in this study are fitted and parameterized using the method of maximum-

likelihood estimation (MLE), implemented in the R Statistical Computing package rugarch [Gha-

lanos, 2013]. (R Statistical Computing Language base software and packages are available from

http://cran.r-project.org [R Core Team, 2013].) The parameters of the model, described in Table

1, are the estimators that maximize the likelihood function [Akaike, 1998]. Numerous statistical

measures based on MLE have been developed to evaluate the suitability of the parameterized
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model. This section summarizes the tests used to characterize the GARCH models fitted to hourly

net load data.

Parameter selection and significance With any parametric model there is a danger of over-

fitting the model by specifying too many parameters and creating a deceptively good fit that fails to

reproduce the characteristics of the data in simulations and forecasts [Farrell et al., 1996]. Three

tests for testing the parameterization of the model are used below.

1. Standard error and statistical significance: Ghalanos [2013] calculates the t statistics and

standard errors (SE) for each of the estimated parameters, along with their robust standard

errors, a measure of standard error robust to misspecificaiton of the model, developed by

White [1982]. Misspecification of the modeled stochastic process or its probabilistic distri-

bution is often difficult to avoid or to detect a priori. Hipel and McLeod [2004] suggest that

if the SE is larger than approximately 1/3 of the estimated parameter the parameter may be

considered redundant because the large standard error indicates that the likelihood function

is not sensitive to the parameter in question. In the following analysis each estimated pa-

rameter is examined for statistical significance and redundancy - SE greater than 10% of the

estimated parameter is chosen as a conservative first filter for over-fitting in this case.

2. Nyblom Stability Test: The Nyblom stability test was developed to test the null hypothesis

that the parameters of a time series model are constant over time [Nyblom, 1989]. The

parameter stability test is implement in Ghalanos [2013] as extended by Hansen [1992] to

test the stability of the individual parameters. The test statistics are chi-squared distributed

and the null hypothesis that the parameter is stable over various time periods is rejected

when the test statistic is greater than the critical value.

3. Akaike Information Criterion (AIC): The AIC is a measure of the relative quality of the fitted

model based on the goodness of fit as determined by the log likelihood function and a penalty

term based on the number of model parameters [Akaike, 1974]. Among models fitted to the

same data set, the model with the lowest AIC is favored over the others.
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Overall model fitness Characteristics of the model and its performance in forecasts and simula-

tions should be realistic and consistent with the original properties of the data. Each of these three

tests gives insight into whether the model realistically captures specific properties of the data.

1. Persistence and stationarity: Persistence is the notion that a shock or disturbance in the

time series will continue to have influence over time that dies out approximately exponen-

tially. In the context that volatility models were developed, persistence with value close to

one represents financial risk assumed in the future due to shocks in the past [Nelson, 1991].

More generally, large persistence implies non-stationarity in the variance equation. For each

model, the calculated persistence is evaluated with the characteristics of the observed vari-

ance in the original data in mind.

2. Unique model parameters: In the comparison of sGARCH to eGARCH, the reason that

eGARCH may be preferred is because of asymmetry in the volatility of the data. A statistically

significant γ and α parameter estimate verifies the existence of asymmetry in the data and

justifies the use of the more sophisticated model.

3. Forecast test: 2400 data points are held back for out-of-sample forecast testing. The mean

absolute error (MAE) and mean squared error (MSE) are used to compare the performance

of the various models.

Diagnostics The following tests are used determine whether the model is a proper GARCH

specification, specifically referring to a valid choice of GARCH model and conditional distribution.

1. Correlation of the squared residuals: Since the stochastic model innovations are generated

by zt (0,1) i.i.d, the squared residuals will have no autocorrelation if the GARCH model is cor-

rectly specified. The prevailing test for this correlation is the Ljung-Box Q test [Ljung and Box,

1978], which tests the null hypothesis that the residuals are independently distributed. The

Ghalanos [2013] provides Q-statistics for three standard lag values, which are chi-squared

distributed, as well as the autocorrelation function for the squared residuals.

2. Remaining ARCH effects: ARCH effects are, stylistically, the autocorrelation of squared

residuals. Recalling from equation 3 the ε2 term is referred to as the ARCH term, refer-
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Data set mean intercept slope Data set mean intercept slope
ln(summer) 8.5037 8.65 -11.0E-6 ln(winter) 8.849 8.8 -8.1E-6

diff(summer) -0.0141 0.078 -7.0E-6 diff(winter) -0.0242 0.11 -9.4E-6
summer 5062 5695.4 -0.0478 winter 5871 6400 -0.038

Table 2: Log transformation of the seasonal data set reduced the trend in the raw data comparably
to differencing.

ring to the model originally developed in Engle [1982]. The ARCH Lagrange Multiplier (LM)

test calculates the test statistic on the squared residuals, which is chi-squared distributed. A

well-specified GARCH model will remove all ARCH effects from the residuals.

3. Sign Bias Test: If asymmetry in the volatility of the orginial data was present, there should

be no asymmetry remaining in the residuals of the fitted model. The Sign Bias Test of Engle

and Ng [1993] is used to determine the whether significant asymmetry remains based on

positive shocks, negative shocks, and, jointly, both positive and negative shocks.

Emperical Considerations in GARCH Specification

The following are observable features of the net load timeseries that inform model specifications.

Volatility

The patterns of volatility in net load - that is, clusters of larger changes in series value followed by

clusters of smaller changes - and the statistical distribution of data points are markedly different

between summer and winter (Figure 4). Wind output is more irregular with lower peaks in the

winter months. Summer wind power output is more regular with consistently higher peaks than

in winter (Figure 5). Power demand is conversly higher in winter than in summer. Thus, the ratio

of peak wind output to peak load increases over the long term, but is higher in winter than in the

summer of the same year (this topic is addressed in the next section). In order to account for

these differences and more adequately describe the volatility using a GARCH process, the data

is divided into two seasonal time series. The seasons are defined to coincide with the power

seasons: winter runs from November 1 through April 30, and summer runs from May 1 through

October 31.
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Figure 4: Emperical CDF of net load data by seasons. Winter net load values distributed more
widely over the range of net load values due to a high winter peak in the month of January.

Figure 5: Wind patterns are more regular and more frequently reach full capacity in summer than
in winter.
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Figure 6: The variance in the residuals, calculated here by season, trends upwards throughout the
original sample. The external regressor, wind penetration, explains some of this variance.

Figure 7: Wind penetration increases over the study period, and is lower in winter than summer
due to higher peak load and lower wind outputs.
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Trend and Periodicity

ARMA-GARCH models are intended to be fit to data with stationary unconditional mean and vari-

ance. This data set has a negative trend in mean net load and a steady increase in the vari-

ance (Figure 6). The trend in the mean is shown in Table 2. The increasing variance can be

explained by the increases in installed wind generation capacity over the study period. Wind pen-

etration is the quantity used to describe how much wind power is in service relative to the load

it serves and can be calculated in terms of annual energy production or in terms of power ca-

pacity. In this study, wind power penetration is used, and seasonal peak wind power output is

assumed to equal the available installed wind power capacity. Wind penetration is thus defined

as max(hourly wind)/max(hourly load) and plotted in Figure 7. In order to explain some of the vari-

ance in the data, the model is fitted with wind penetration as an external regressor in the variance

equation, described below.

The trend in the mean can be removed by differencing the data once. As an alternative to dif-

ferencing, a natural log transformation was also tested. The trend in the transformed data is small

in magnitude, on the order of 10-5 and results in a change over the study period of approximately

2.5 percent of the mean. This approach is considered viable for a GARCH model because there is

an annual periodicity in the data that results in local trends in the data that are significantly larger

in magnitude than 10-5, causing the overall trend to have a limited effect on the fit of the model. It is

shown in Table 2 below that the log-transformed data and differenced data have similar long-term

linear trends.

Autocorrelation

The net load time series exhibits strong autocorrelation in both seasons. Figure 8 shows the

autocorrelation function (ACF) and partial autocorrelation function (PACF) for the series. The

autocorrelation is strong and persistent out past 48 timesteps, and the partial autocorrelation drops

off quickly, becoming barely significant after 24 lags. According to Hipel and McLeod [1994], the

combination of these two characteristics indicates the need for a mean process model that includes

both autoregressive terms (AR) and moving average (MA) terms. The strong ACF and PACF at

lags at 8, 18, and 24 hours are indicative of the typical electricity consumption patterns that result
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GARCH Process sGARCH(1,1) eGARCH(1,1) eGARCH(1,1)
Mean Process ARMA(1,1) ARMA(1,1) ARMA(2,1)

Conditional Distribution sstd sstd sstd
Regressors None None max wind/max load

Data Set hourly loads, first difference hourly loads, first difference hourly loads, first difference

Table 3: sGARCH and eGARCH were compared in the initial steps of model selection.

in daily peaks at the breakfast and dinner hours correlated with a consumption minimums near

2 am. These observations suggest AR terms between 1 and 24 may be significant, and thus

examination of the significance of individual terms is warranted.

Fitted Model

GARCH models were fitted to the net load time series using R package rugarch as follows [Gha-

lanos, 2013].

The sGARCH order (1,1) has been shown to be the best choice for a wide variety of data

sets [Bauwens et al., 2012] so sGARCH(1,1) was compared with eGARCH(1,1), fitted to first

differenced data. (see Table 3 for model specifications). Five models designed to establish the

basic structure of the GARCH formulation were tested. Preliminary analysis had established that

a skewed conditional distribution was necessary, and the significance of gamma and the standard

errors of alpha and beta clearly indicated that eGARCH was the superior model compared to

sGARCH.

The five early model tests included formulations of the mean model utilizing AR(2) and ARMA(2,1)

as well as eGARCH(2,1) with and without regressors in the variance model. The complete results

are included in Appendix B - Table 1. ARMA(2,1)eGARCH(1,1) with variance regressors outper-

formed all the other models in all goodness-of-fit measures, including AIC, but failed to remove all

sign bias and the Nyblom parameter stability test produced results consistently above the critical

value. (See Table 4.) Further refinements were clearly required. At the same time, there are also

indications that some ARCH effects remain in the data-squared residuals. ARCH effects are likely,

according to the Q test, in the standard residuals. However, in samples this large, that is likely to

be the case and squared residuals are considered the more reliable test [Ghalanos, 2013].

The next phase of model selection involved testing data transformations. (See Table 5.) The fit
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Figure 8: The autocorrelation function and partical autocorrelation function of the seasonal data
indicate the need for both AR terms and MA terms.

GARCH Process sGARCH(1,1) eGARCH(1,1) eGARCH(1,1)
Mean Process ARMA(1,1) ARMA(1,1) ARMA(2,1)

AIC 13.39 13.36 13.23
Sign Bias High Significance High Significance Low Significance

Parameter stability Highly unstable Highly unstable γ and skew - <0.47
β - 63.6 β - 1.7

shape - 26.0 shape - 3.9

Table 4: Results of the initial models. eGARCH(1,1) with variance regressors was selected to
continue with based on AIC, sign bias, and relative improvement in Nyblom parameter stability.
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Model ID 10s 11s 15s 15slnreg
GARCH Process eGARCH(2,1) eGARCH(2,1) eGARCH(2,1) eGARCH(2,1)
Mean Process ARMA(24,1) ARMA(24,1) ARMA(24,1) ARMA(24,1)

Conditional Dist. sstd sstd sstd sstd
Regressors max wind/max load max wind/max load

Data Set ln(diff(summer)) ln(diff(summer)) summer ln(summer)

Table 5: The need for differencing is clear in these comparisons, as well as providing evidence
that the natural log transformation improves the ability of the model to capture the more extreme
variations in hourly data. The data set summer refers to the hourly data for the summer season
described above.

diagnostics for the six models tested are tabulated in Appendix B - Table 2. It was determined that

the natural log transformation improved the model fit by improving parameter stability and reducing

the magnitude of assymetries so that sign bias was reduced. However, log transformation was

not sufficient on its own. In the untransformed data set summer and in the log-transformed data,

autocorrelations and ARCH effects in the residuals were still very apparent, immediately ruling

them out as suitable options and pointing toward the need for differencing. The log-transformed

differenced data was selected for detailed model fitting.

Considering the strong daily periodicity of the data, ARMA(24,1)eGARCH(2,1) sstd with re-

gressors fitted to the natural log of the first differenced data was selected as the base model to

be refined. The initial model, labeled 10s, performed well, with an AIC of -3.32, no significant

sign bias, and highly significant Q statistics indicating uncorrelated residuals. However, nine of

the model parameters had standard errors greater than or equal to 0.10 of the estimated value,

indicating the model is "over fit." So model 10s was altered systematically, removing or adding one

parameter at a time using the partial autocorrelation function as guidance. "Removing" a param-

eter out of sequence is accomplished in rugarch by setting the parameter to have a fixed value of

zero. 14 modifications of Model 10s were tested and a subset of the summer models are summa-

rized in the results section below. Building on the patterns observed in the summer trials, winter

parameterization was more targeted, with a total of seven combinations of parameters tested. A

summary of this procedure is provided in Appendix B - Table 3.
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Model ID Model AIC
10s ARMA(24,1) -3.32

10s4 ar={1,2,6,24} -3.25
10s8 ar={1,2,6,14,15,16,23,24} -3.3
1w ARMA(24,1) -3.63
5w ar={1,2,6,16,17} -3.3
7w ar={1,2,6,24} -3.51

Table 6: For each data set, summer and winter, one or more reduced models performed as well as
the model based on eGARCH(2,1)ARMA(24,1), but achieved a lower AIC and improved parameter
significance.

Selected Models

In the case of both winter and summer, the ARMA(24,1)eGARCH(2,1) models performed well in

all general measures of goodness of fit. Compared with all models tested, the AIC was low, sign

bias was eliminated, and serial correlations and ARCH effects were removed. However, a number

of parameters were statistically insignificant or had high standard errors, indicating the risk of over-

fitting. Through the process described above, the model parameter estimates were improved and

the best three seasonal models are listed in Table 6. These models were selected because of

their significant parameters and low AICs, as well as passing the rest of the goodness of fit tests,

to be compared in forecast tests, applied in the next section.

The Nyblom stability parameters were often above the critical value for several parameters in

each of the models. This is not unexpected because the data series being fitted are somewhat

longer than they should be. It is important to note, however, that the distribution parameters,

skew and shape, are within the critical value, or nearly so, for each of the models selected for

forecast tests, indicating a stable conditional distribution for the GARCH model across the entire

sample. For the forecast test, models with the most stable conditional distribution parameters were

preferred.

The persistence for an eGARCH model is defined to be the sum of the beta parameters [Gha-

lanos, 2013]. In each of the selected models, β is less than one. As expected, the inclusion of

variance regressors that explain the steady increase in variance due to increased wind penetration

reduces the value of β somewhat.
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Forecast Experiments

Each model regression using the rugarch package creates a fit object that includes a specification

of data held out for the purposes of out-of-sample forecast tests. The size of the out sample was

selected based on the seasonality of the series being fit: the last one-half season of summer and

the last full season of winter were held out. The difference is in the desire to see whether there

was a drastic difference in forecast error when data representative of the season being forecast

was present in the data fit.

The forecast method in rugarch takes a fit object which specifies an out sample of length n.

The forecast is a rolling forecast, with single period look ahead, and n− 1 rolls. In this forecast

experiment, wind penetration from the last year in the time series, the year with the largest wind

penetration, was utilized as the regression data.

The forecast object is returned with forecast error measures - mean squared error (MSE),

mean absolute error (MAE), and the Directional Accuracy Test (DAT), which provides a measure

of how often the value of the model changed in the same direction as the original data set. In a

comparison, the model with the lowest MSE and MAE and highest DAT is the superior model for

forecasting.

Table 7 summarizes the forecast results. Each of the best models described above were tested,

with the exception of model 5w, which exhibited unstable conditional distribution parameters in

spite of its superior AIC value. The models performed similarly, with the “overfit” 10s and 1w

models scoring very slightly better. In comparison with each other, the low variance in the MSE and

MAE suggests that the other model diagnostics should be the deciding factor. Note the difference

between MSE in the summer models and winter models: Including a portion of the forecasted

season made a sizeable difference in the MSE, suggesting the regression in the variance equation

was not fully effective in capturing the inter-annual dynamics.

Simulation of Data

The following simulated data set was generated from the models selected in the forecast test -

specifically Model 10s8 and Model 7w. The simulated mean series values were transformed back
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Model ID MSE MAE DAT
10s8 0.004149 0.04617 1
10s4 0.004294 0.04705 1
10s 0.004078 0.04560 1
1w 0.006150 0.04370 1
7w 0.006860 0.04637 1

Table 7: A rolling forecast over the last season of historical data was performed on each of the
models selected in the previous section. The detailed forecast specifications can be found in
Appendix B - Table 4.

to differenced MW values, with x0 = 0. Simple integration of the differenced series resulted in a

series with a large amount of departure from xo due to the compounding of estimation error over the

integration. The mean squared error of any single simulated observation can be calculated using

the random-shock moving average equivalent of the ARIMA model [Hipel and McLeod, 1994],

using

MSE = σ
2
l +ψ

2
1 σ

2
l−1 + ...+ψ

2
l−2σ

2
2 +ψ

2
l−1σ

2
1

where l is the number of timesteps beyond t = 0, σ2
t is the conditional variance at time t, and ψi

is the ith Psi-weight of the random-shock model representation [Hipel and McLeod, 1994]. In a

homoskedastic process, σ2
t = σ2

t+1 for all t, and the MSE approaches the unconditional variance

of the series for long time horizons. The prediction errors for predicted values beyond t = 0, given

uncorrelated errors, can be shown to be correlated [Box and Jenkins, 1976]. However, in this

GARCH model the errors are time dependent and serially correlated, and the Psi-weights dimin-

ish slowly over time, characterized by a 24-hour periodicity and retaining relatively large positive

values at the 24-hour interval beyond 100 time stepes resulting in the trend in the simulated data.

To remove the cumulative effect of the correlation in error terms, the following algorithm was

developed to filter the long-term effects from the integrated series. In particular, filter sizes were

selected to cover the strongest peaks in the Psi-weights within two 24-hour periods of the sim-

ulated value. For the summer series, the strong peaks are located at t+24 hours, while for the

winter series, the peaks at t+12 and t+24 were similar in value. The filter used was a simple mov-

ing average, centered on the simulated value. The moving average value was subtracted from the

integrated simulated values, resulting in a demeaned simulated series.
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Figure 9: The CDF of simulated values confirm that the low-pass filter used to de-mean the data
preserved the statistics of the original simulation for the summer data set (left) and the winter data
set (right).

The distributions of the simulated series and the original, demeaned data are compared to

evaluate the success of this approach. In Figure 9 the CDF of the summer simulation confirms

the results of the original fit: the simulated values are well-distributed over most of the distribution,

with the exception of the lower tail, which is “light.” The winter simulation is precisely the right

shape but is light in both tails. However, the innovations of the summer and winter simulations

are skewed toward the tails compared to the original data (Figure 10), an apparently contradictory

observation that is explained by comparing a section of the two timeseries. Qualitatively, Figure

11 compares the summer simulation and original net load data from summer, 2012. The original

data displays pronounced low-variance periods of high values corresponding to calm, low-wind

conidtions, and high-variance periods with relatively low values, corresponding to windy conditions.

The simulated mean data do not retain this anti-correlation between variance and value. However,

plotting prediction intervals depicting the distribution of values for each time step, as described by

the simulated conditional standard deviation, the anti-correlation becomes visually apparent in the

assymetric distribution of simulated values (Figure 12).
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Figure 10: The innovations in the summer (left) and winter (right) simulations are skewed toward
the tails of the distribution.

Figure 11: A comparison of a portion of the simulated series and the original data shows that the
simulation successfully captures high and low volatility periods, but the anti-correlation between
series value and local volatility is not apparent. This feature becomes apparent when confidence
intervals are added to the plot (see Figure 12).
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Figure 12:

Conclusions

Electricity demand, or load, is a stochastic input that is important in a number of fianancial and

operational models. Increasingly, wind power is a second stochastic quantity that must be taken

into account, and which is likely to include a trend in both its magnitude and variability. Combin-

ing the two quantities serves to obscure some of the individual process dynamics, as well as the

possible correlations between wind power output and total demand such as weather effects, time

of day, and scheduling decisions. In the same way that GARCH modeling was originally devel-

oped to cope with similar “micro processes” in financial returns, the objective of this study is to

demonstrate that GARCH modeling is a useful tool for modeling the dynamics of regional net load

utilizing only readily available data, and to develop synthetic simulations useful for both static and

dynamic modeling. Multiple model formulations were found that passed the selected goodness of

fit measures, performed similarly in forecasting tests, and produce useful simulations.

It was confirmed in the model fitting and testing that a subset of the ARMA(24,1) mean model

is needed to capture the periodicity of the net load series. The AR24 parameter was not stable

according to the Nyblom stability test for all models tested, but its inclusion improved the other
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fit measures of the model compared to excluding it. The two models selected for the simulation

included AR terms at lags 1,2,6 and 24 which resulted in highly significant parameters, passed the

goodness of fit tests, and resulted in similar or superior stability measures compared to the similar

models.

Using wind penetration as a regression variable in the variance, the simulation successfully

reproduced the change in variance from one year to the next. However, the correlation with wind

penetration was not strong enough so that the magnitude of the change in variance was captured

effectively. Some of this effect is due to a wide range of net load conditions within each of the two

seasons of the model. A seasonal model developed on monthly or quarterly data may be more

able to capture the relative changes in variance associated with wind penetration.

In the next chapter, the simulated data will be used to calculate the economically optimal

pumped-storage hydropower investment given an existing regional supply curve. It will be shown

how some of the noise in the hourly GARCH simulation can be mitigated by aggregating the hourly

simulated data into longer timesteps. In Chapter 4, the same simulated data at the hourly reso-

lution and the results of Chapter 3 are used to dynamically simulate the operations of pumped

storage under uncertainty and determine the sensitivity of operations to changes in net load vari-

ance.
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Appendix A

A number of variations of the standard GARCH model have been developed to capture the non-

linear and assymetric properties of series variance.

N-GARCH - The non-linear GARCH model was developed by Engle and Ng [1993] to capture

the leverage effect of current innovations on future volatility by introducing an extra term in the

ARCH expression:

σ
2
t = βσ

2
t−1 +α(εt−1−θ

√
σ2)2

whereα is the ARCH term, β is the GARCH term, ε is the series innovation defined as εt = σtzt as

above, and θ is the leverage term.

Q-GARCH - Quadratic GARCH was first proposed by Sentana [1995] to model the asymmetric

effects of both positive and negative innovations.

σ
2
t = βσ

2
t−1 +αε

2
t−1 +φεt−1.

GJR-GARCH, a model developed by Glosten, et al. [1993] implements the indicator function,

It− j, to model positive and negative shocks assymetrically.

σ
2
t =

q

∑
j=1

(α jε
2
t− j + γ jIt− jε

2
t− j)+

p

∑
j=1

β jσ
2
t− j

where the indicator function I takes the value 1 for ε > 0 and 0 otherwise, and γ is referred to as

the leverage term because it corresponds to the disproportional influence that a positive innovation

will have on future variance compared to negative innovations.
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Appendix B

All parameter estimates and significance tests were evaluated based on the outputs contained

in the tables below. These outputs were produced by the ugarchfit method from the rugarch

package for R [Ghalanos, 2013; R Core Team, 2013]. Each fit object was given an ID indicating

the season (s, w), the model run number, and whether the variance model included external

regressors (reg).
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Diss
GARCH sGARCH(1,1) eGARCH(1,1) eGARCH(1,1) eGARCH(1,1) eGARCH(1,1)
Mean ARMA(1,1) ARMA(1,1) AR(2) ARMA(2,1) ARMA(2,1)
Dist sstd sstd sstd sstd sstd
Regressors xternal reg: max wind/max load
Data Set diffhourlyload diffhourlyload diffhourlyload diffhourlyload diffhourlyload
Parameters

Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|)
mu -1.99166 2.089794 -0.95304 0.34057 1.99149 0.693698 2.8708 0.004094 1.99064 2.949768 0.67485 0.49977 1.99164 0.727319 2.7383 0.006175 1.92502 0.682973 2.8186 0.004824
ar1 0.58346 0.004538 128.568 0 0.5883 0.004233 138.9918 0 0.93305 0.004795 194.581 0 1.6277 0.003504 464.4786 0 1.63062 0.003399 479.7256 0
ar2 -0.28912 0.004169 -69.3477 0 -0.74459 0.002695 -276.24 0 -0.74675 0.002734 -273.154 0
ma1 0.30779 0.004999 61.57193 0 0.286 0.00555 51.5308 0 -0.89334 0.004839 -184.606 0 -0.90029 0.003713 -242.471 0
omega 15849.81 411.7133 38.49721 0 3.54857 0.08132 43.6373 0 3.96197 0.090537 43.7609 0 4.04153 0.096534 41.8663 0 4.19719 0.099373 42.2368 0
alpha1 0.44474 0.012644 35.173 0 0.23325 0.006544 35.6446 0 0.22599 0.007424 30.44241 0 0.19225 0.007354 26.142 0 0.1988 0.007443 26.7117 0
beta1 0.2922 0.010481 27.87869 0 0.66512 0.007651 86.9339 0 0.62584 0.008551 73.18442 0 0.61664 0.009144 67.4371 0 0.57587 0.009962 57.8056 0
gamma1 0.58491 0.011747 49.7919 0 0.63653 0.01226 51.91962 0 0.63642 0.012354 51.5158 0 0.61447 0.012509 49.1207 0
vxreg1 0.89918 0.041516 21.6586 0
skew 1.00188 0.005708 175.5339 0 1.00914 0.005499 183.5041 0 1.0181 0.006441 158.0636 0 0.96085 0.005623 170.8908 0 0.95554 0.005759 165.93 0
shape 5.24627 0.125353 41.85186 0 5.38915 0.126884 42.4729 0 5.01744 0.113397 44.24671 0 4.70837 0.104557 45.0315 0 4.85406 0.111606 43.4927 0

Log Likelihood -367869 -367047 -366333 -364381 -353898
AIC 13.39 13.36 13.334 13.263 13.233

Q-stats on Standard Residuals
Q Stat p-value Q Stat p-value Q Stat p-value Q Stat p-value Q Stat p-value

Lag[1] 8.999 0.002701 11.51 0.000692 72.45 0 Lag[1] 103.1 0 151.7 0
Lag[p+q+1][3] 400.929 0 382.56 0 173.49 0 Lag[4] 264.8 0 330.9 0
Lag[p+q+5][7] 3746.121 0 3878.43 0 2384.52 0 Lag[8] 1161.2 0 1326.9 0
d.o.f=2
Ho: No serial correlation

Q-stats on Squared Residuals
Lag[1] 2.321 0.1276 0.121 0.728 0.3206 0.5713 0.7857 0.3754 0.2949 0.5871
Lag[p+q+1][3] 2.627 0.1051 0.2785 0.5977 0.4337 0.5102 1.0305 0.31 0.3977 0.5283
Lag[p+q+5][7] 3.962 0.5548 1.0134 0.9615 1.0578 0.9578 1.7764 0.8791 0.9265 0.9683
d.o.f=2

ARCH LM Test p-value p-value p-value p-value
ARCH lag[2] 2.591 0.2737 0.279 0.8698 0.4344 0.8048 1.012 0.603 0.384 0.8253
ARCH lag[5] 3.764 0.5839 0.9299 0.968 0.9643 0.9654 1.714 0.8871 0.918 0.9689
ARCHlag[10] 4.162 0.9397 1.2444 0.9995 1.3051 0.9994 2.39 0.9924 1.182 0.9996

Nyblom stability test 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value
Joint Stat 105.9658 > 2.11 109.275 > 2.32 127.8706 > 2.32 145.4388 > 2.54 63.9547 > 2.75
mu 3.311 > 0.47 5.283 > 0.47 2.543 > 0.47 10.3285 > 0.47 4.1608 > 0.47
ar1 11.566 8.784 4.854 12.6145 13.2606
ar2 19.6331 19.8723
ma1 22.791 19.561 2.377 9.5456 9.8138
omega 45.81 58.954 65.105 71.9455 2.0426
alpha1 31.371 24.355 22.779 20.022 14.9599
beta1 63.627 60.535 67.417 74.5769 2.2895
gamma1 1.119 1.28 2.8204 0.2924
vxreg1 1.6791
skew 1.278 2.376 1.255 0.2652 0.2821
shape 26.003 13.63 21.414 31.7996 3.851

Sign Bias Test
Sign Bias **
Negative Sign Bias **
Positive Sign Bias *** *** ** **
Joint Effect *** *** ** *** *

Sign Bias, testing the null hypothesis that no asymmetry remains in the residuals - * = reject the null with low significance, ** = moderate significance, *** = high significance



Table 2 - Results from data transformation study and corresponding fit diagnostics

GARCH eGARCH(2,1) 10s eGARCH(2,1) 11s eGARCH(2,1) 15s eGARCH(2,1) 15slnreg
Mean ARMA(24,1) ARMA(24,1) ARMA(24,1) ARMA(24,1)
Dist sstd sstd sstd sstd
Regressors xternal reg: max wind/max load xternal reg: max wind/max load
Data Set lndiffsummer lndiffsummer summer lnsummer
Parameters

Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|)
mu 8.062822 0.000265 30470.71 0 8.062753 0.000385 20968.13 0 5399.459 40.74938 132.5 0 8.594201 0.007255 1184.579 0
ar1 0.342799 0.013955 24.56469 0 0.343829 0.013718 25.06364 0 1.957479 0.001375 1424.1 0 1.952059 0.001645 1186.833 0
ar2 0.011922 0.008302 1.43591 0.151027 0.012133 0.009051 1.34046 0.180095 -1.29658 0.002223 -583.25 0 -1.2973 0.002199 -590.037 0
ar3 -0.03564 0.005248 -6.7921 0 -0.03381 0.004369 -7.73948 0 0.35173 0.003418 102.91 0 0.347837 0.003012 115.4903 0
ar4 -0.00817 0.004466 -1.82956 0.067315 -0.00847 0.004402 -1.92416 0.054335 -0.00601 0.001968 -3.0527 0.002268 0.00131 0.002073 0.63199 0.527395
ar5 -0.02985 0.005197 -5.74316 0 -0.02966 0.004342 -6.82998 0 -0.03649 0.002137 -17.073 0 -0.03951 0.001651 -23.9248 0
ar6 -0.05454 0.005562 -9.80546 0 -0.05393 0.004489 -12.0131 0 -0.01506 0.002138 -7.0406 0 -0.01273 0.001178 -10.8069 0
ar7 -0.04882 0.005561 -8.77969 0 -0.04863 0.004316 -11.2665 0 0.02962 0.003833 7.7284 0 0.030706 0.004121 7.45129 0
ar8 -0.0792 0.005266 -15.0401 0 -0.07893 0.004764 -16.5673 0 -0.05638 0.002437 -23.131 0 -0.0471 0.004802 -9.80869 0
ar9 -0.01235 0.005512 -2.24088 0.025034 -0.01327 0.004249 -3.12306 0.00179 0.099532 0.000836 119.13 0 0.09234 0.002183 42.29476 0
ar10 -0.00384 0.005286 -0.72656 0.467493 -0.00431 0.004729 -0.91048 0.36257 -0.03932 0.002406 -16.343 0 -0.04807 0.002768 -17.3703 0
ar11 -0.00704 0.004891 -1.43926 0.150078 -0.00582 0.003911 -1.48738 0.136914 0.001544 0.004454 0.34672 0.728804 0.002352 0.001069 2.19978 0.027822
ar12 -0.00435 0.004422 -0.98462 0.324808 -0.00376 0.004787 -0.78458 0.432699 0.003325 0.001476 2.2522 0.024308 0.005245 0.000667 7.86532 0
ar13 -0.0271 0.004231 -6.40444 0 -0.0277 0.005057 -5.47641 0 -0.02579 0.001145 -22.527 0 -0.02205 0.000729 -30.2663 0
ar14 -0.04121 0.005027 -8.19771 0 -0.03973 0.005213 -7.62187 0 -0.00255 0.002091 -1.2185 0.223023 -4.6E-05 0.000178 -0.26135 0.793825
ar15 -0.04559 0.005323 -8.56439 0 -0.04557 0.0047 -9.69715 0 0.002699 0.002094 1.289 0.197387 0.003802 0.001308 2.90739 0.003645
ar16 -0.0577 0.00509 -11.3371 0 -0.05652 0.005426 -10.4161 0 -0.02867 0.002084 -13.756 0 -0.02941 0.001687 -17.434 0
ar17 -0.01901 0.004418 -4.30203 0.000017 -0.01889 0.004961 -3.80766 0.00014 0.073319 0.002073 35.364 0 0.062618 0.001621 38.6406 0
ar18 -0.01803 0.004501 -4.00594 0.000062 -0.01805 0.004898 -3.68588 0.000228 -0.0424 0.003291 -12.884 0 -0.04184 0.001654 -25.2935 0
ar19 -0.00531 0.004608 -1.15233 0.249184 -0.00585 0.00434 -1.34858 0.177473 0.033645 0.004555 7.3869 0 0.038771 0.001641 23.62023 0
ar20 -0.00554 0.004468 -1.24007 0.214948 -0.00398 0.003829 -1.03852 0.299026 -0.01704 0.002151 -7.9215 0 -0.01949 0.001142 -17.0696 0
ar21 -0.0305 0.004385 -6.95586 0 -0.02942 0.004279 -6.87636 0 -0.03225 0.00513 -6.2865 0 -0.02664 0.001269 -20.9916 0
ar22 -0.01609 0.004775 -3.36898 0.000754 -0.01644 0.003241 -5.07131 0 0.01941 0.002233 8.6911 0 0.026696 0.001181 22.611 0
ar23 0.119275 0.005115 23.31664 0 0.119823 0.004643 25.80768 0 0.260864 0.001445 180.53 0 0.235794 0.004709 50.06806 0
ar24 0.306812 0.000971 315.8659 0 0.304303 0.006451 47.17313 0 -0.24778 0.001878 -131.94 0 -0.22957 0.003445 -66.648 0
ma1 0.169042 0.014063 12.02024 0 0.16837 0.013661 12.32464 0 -0.43134 0.006742 -63.983 0 -0.41942 0.006483 -64.6969 0
omega -0.29072 0.012832 -22.6552 0 -0.0772 0.000536 -144.037 0 0.098458 0.000551 178.68 0 -0.26461 0.006658 -39.7421 0
alpha1 -0.02285 0.011075 -2.06309 0.039104 -0.0283 0.012085 -2.34151 0.019206 0.002228 0.011926 0.18683 0.851794 -0.03798 0.012062 -3.14845 0.001641
alpha2 0.016659 0.010627 1.56768 0.116955 0.028893 0.011811 2.44631 0.014433 -0.02962 0.012064 -2.4555 0.014069 -0.05516 0.011975 -4.60649 0.000004
beta1 0.959083 0.001815 528.4479 0 0.987131 0.000032 31197.78 0 0.990158 0.000004 229260 0 0.967132 0.000924 1047.014 0
gamma1 0.496014 0.016264 30.49833 0 0.499449 0.0169 29.55377 0 0.500917 0.015546 32.222 0 0.532247 0.016188 32.87815 0
gamma2 -0.39025 0.015911 -24.5278 0 -0.40658 0.016694 -24.355 0 -0.41726 0.015787 -26.43 0 -0.39698 0.014911 -26.6232 0
vxreg1 0.146779 0.009623 15.25351 0 0.109925 0.007925 13.86979 0
skew 0.881989 0.00715 123.3503 0 0.880078 0.005113 172.1308 0 0.938328 0.008384 111.92 0 0.943437 0.008888 106.1497 0
shape 4.433836 0.145606 30.451 0 4.298738 0.120425 35.69637 0 4.606561 0.138912 33.162 0 4.755912 0.152038 31.28115 0

Log Likelihood 40076.43 39953.74 -154535 50307.44
AIC -3.3236 -3.3135 12.829 -4.1727

Continued on the next page



Table 2 continued - Results from data transformation study and corresponding fit diagnostics

GARCH eGARCH(2,1) 10s eGARCH(2,1) 11s eGARCH(2,1) 15s eGARCH(2,1) 15slnreg
Mean ARMA(24,1) ARMA(24,1) ARMA(24,1) ARMA(24,1)
Dist sstd sstd sstd sstd
Regressors xternal reg: max wind/max load xternal reg: max wind/max load
Data Set lndiffsummer lndiffsummer summer lnsummer

Q-stats on Standard Residuals
Q Stat p-value Q Stat p-value Q Stat p-value Q Stat p-value

Lag[1] 5.399 0.02014 3.292 0.06961 43.84 3.56E-11 47.71 4.94E-12
Lag[p+q+1][26] 270.872 0 263.596 0 1220.58 0 1181.4 0
Lag[p+q+5][30] 328.353 0 323.306 0 1296.75 0 1265.13 0
d.o.f=2
Ho: No serial correlation

Q-stats on Squared Residuals
Lag[1] 8.11E-06 0.9977 1.7E-06 0.999 0.4122 0.5209 0.01412 0.90542
Lag[p+q+1][4] 0.002645 0.959 0.002473 0.9603 475.8235 0 15.03756 0.000105
Lag[p+q+5][8] 0.006076 1 0.00616 1 478.8508 0 16.86502 0.004763
d.o.f=2

ARCH LM Test p-value p-value p-value
ARCH lag[2] 0.000192 0.9999 1.21E-05 1 474.3 0 14.52 0.000702
ARCH lag[5] 0.004315 1 0.004257 1 484.4 0 16.03 0.006759
ARCHlag[10] 0.008579 1 0.008864 1 484.7 0 16.93 0.075956

Nyblom stability test 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value
> 0.47 > 0.47 > 0.47 > 0.47

mu 0.1902 0.04367 4.2347 5.2584
ar1 0.5375 0.68319 2.1434 0.8381
ar2 0.7264 0.81642 1.4717 0.6494
ar3 2.1129 2.23396 0.8446 0.4092
ar4 1.4801 1.47982 0.3932 0.2406
ar5 0.3216 0.35534 0.2125 0.233
ar6 2.0456 2.07445 0.1443 0.2742
ar7 0.2302 0.2115 0.1539 0.3899
ar8 2.5251 2.40832 0.2117 0.4928
ar9 0.3539 0.29618 0.3665 0.7146
ar10 0.3293 0.28496 0.4785 0.8293
ar11 0.5712 0.52828 0.6482 1.0015
ar12 0.5445 0.56606 0.8388 1.1776
ar13 0.3724 0.36901 1.0516 1.3829
ar14 1.0111 1.01859 1.3098 1.658
ar15 0.8683 0.90365 1.7245 2.1455
ar16 1.4277 1.51906 2.18 2.7848
ar17 0.0542 0.05403 2.5506 3.4695
ar18 0.1264 0.11971 2.5217 3.7442
ar19 0.4741 0.609 2.443 3.9745
ar20 0.3703 0.41232 2.0541 3.6594
ar21 0.1121 0.10878 1.685 3.1396
ar22 1.2572 1.39829 1.1473 2.1552
ar23 4.9091 4.9375 0.3862 0.753
ar24 18.9615 18.92843 0.1004 0.1031
ma1 6.1547 6.39354 14.1393 10.2201
omega 0.2185 10.86375 2.6464 0.2334
alpha1 2.7606 4.57018 6.6414 8.8574
alpha2 2.6344 4.9802 5.8508 7.8974
beta1 0.2622 10.78662 2.767 0.3263
gamma1 3.1486 3.38145 1.6444 6.1965
gamma2 5.1667 4.28779 4.0545 11.8416
vxreg1 0.1808 0.2342
skew 0.5729 0.8968 1.2738 1.2611
shape 0.201 3.03328 1.952 1.0338

Sign Bias Test
Sign Bias 0.2695 0.2801 0.8287 0.7365
Negative Sign Bias 0.8802 0.9891 5.06E-13 *** 0.0682 *
Positive Sign Bias 0.7257 0.7758 4.12E-08 *** 0.9155
Joint Effect 0.7438 0.7367 3.94E-18 *** 0.1514

Sign Bias, testing the null hypothesis that no asymmetry remains in the residuals - * = reject the null with low significance, ** = moderate significance, *** = high significance



Table 3 - Summary of steps toward model refinement

Model ID Fixed parameter models: building on fit10s AIC Notes

fit10s eGARCH(2,1) ARMA(24,1) sstd reg -3.32
All perform well in terms of model diagostic 
measures, but have too many parameters

fit10s1 ar1,2,24,48 and ma1, eGARCH(2,1) -3.3

AIC = -3.3; gamma2 insignificant; ar24 and 
ar48 not stable. Use eGARCH(1,1) in 
subsequent models.

fit10s2 ar1,2,24, and ma1 -3.23
AIC= -3.23; alpha1 not significant; ar24 not 
stable

fit10s3 ar1,2,3,24, and ma1 -3.23 AIC= -3.23; same as 10s3

fit10s4 ar1,2,6,24, and ma1 -3.25
AIC= -3.25; good parameter significance; ar24 
unstable;

fit10s5 ar1,2,6,16,24, and ma1 -3.25 No improvement

fit10s6 ar1,2,6,16,23,24, and ma1 -3.297
AIC= -3.297; slight improvement in stability; 
alpha1 not sig

fit10s7 ar1,2,6,14,16,23,24, and ma1 -3.299
AIC= -3.299; otherwise no real improvement in 
stats

fit10s8 ar1,2,6,14,15,16,23,24 and ma1 -3.3 AIC= -3.3; alpha1 sig to 80%;
fit10s9 ar1,2,5,6,14,15,16,23,24 and ma1 -3.3 No improvement
fit10s10 ar1,2,6,14,15,16,23, and ma1 -3.3 No improvement

fit10s11 ar1,2,6,14,15,16,23,24,48,72,96 -3.379
AIC= -3.379; alpha1 not sig; now we have 
several unstable params

fit10s12 ar1,2,6,14,15,16,24, ma1,2 -3.14 AIC= -3.14; poor sig alpha1, ar16, ma2
fit10s8a ar1,2,6,14,15,16,23, and ma1 -3.35 AIC= -3.35, ar23 still problematic

fit10s8b ar1,2,6,14,15,16, and ma1 -3.22
AIC=-3.22; alpha 1 not very sig; correlation of 
residuals excellent

Model ID Fixed parameter models AIC

fit1w eGARCH(2,1) ARMA(24,1) sstd reg -3.63

fit2w
ar1,2,6,7,12,14,15,16,17,18, and ma1 with 
eGARCH(1,1)

fit3w ar1,2,6,14,15,16,17,18, and ma1 -3.33
fit4w ar1,2,6,15,16,17, and ma1
fit5w ar1,2,6,16,17, and ma1 -3.3
fit6w ar1,2,6,17, and ma1
fit7w ar1,2,6,24, and ma1 -3.51

Progression of Models - Summer

Progression of Models - Winter



Table 4 - Summary of forecast test specifications and results

Forecast tests - year 5 MSE MAE DAT

fit10s8 n.ahead=1 n.roll=2399 lndiffsummer nnsummer5 0.004149 0.046165 1
fit10s4 n.ahead=1 n.roll=2399 lndiffsummer nnsummer5 0.004294 0.047049 1
fit10s n.ahead=1 n.roll=2399 lndiffsummer nnsummer5 0.004078 0.045605 1

fit1w n.ahead=1 n.roll=4379 lndiffwinter nnwinter5 0.006151 0.043697 1
fit7w n.ahead=1 n.roll=4379 lndiffwinter nnwinter5 0.006860 0.046376 1



Table 5 - Results from selected model specifications and corresponding fit diagnostics

GARCH eGARCH(2,1) 10s1 eGARCH(1,1) 10s4 eGARCH(1,1) 10s8 eGARCH(1,1) 10s8b
Mean ARMA(48,1) ARMA(24,1) ARMA(24,1) ARMA(24,1)
Dist sstd sstd sstd sstd
Regressors xternal reg: max wind/max load xternal reg: max wind/max load xternal reg: max wind/max load xternal reg: max wind/max load
Data Set lndiffsummer lndiffsummer lndiffsummer lndiffsummer
Parameters

Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|) Estimate Std Error t value Pr(>|t|)
mu 8.06539 0.0026 3102.113 0 8.065458 0.001241 6500.463 0 8.063739 0.001122 7188.251 0 8.063582 0.001008 7998.172 0
ar1 0.33642 0.038357 8.77084 0 0.439462 0.011031 39.8402 0 0.470461 0.007673 61.3134 0 1.291207 0.003983 324.1851 0
ar2 -0.01376 0.023483 -0.58592 0.557927 -0.03681 0.005515 -6.6741 0 -0.05229 0.004579 -11.4205 0 -0.48607 0.003291 -147.712 0
ar6 0 NA NA NA -0.0755 0.004199 -17.9776 0 -0.0739 0.005816 -12.706 0 -0.11766 0.002768 -42.5123 0
ar14 0 NA NA NA 0 NA NA NA -0.02503 0.005499 -4.5522 0.000005 -0.08452 0.003632 -23.2679 0
ar15 0 NA NA NA 0 NA NA NA -0.02184 0.004898 -4.4586 0.000008 -0.0254 0.002271 -11.1826 0
ar16 0 NA NA NA 0 NA NA NA -0.02523 0.003994 -6.3165 0 -0.00272 0.001548 -1.7564 0.079013
ar23 0 NA NA NA 0 NA NA NA 0.138336 0.007027 19.685 0 0 NA NA NA
ar24 0.323496 0.015671 20.64332 0 0.409089 0.009581 42.6973 0 0.30219 0.008649 34.9409 0 0 NA NA NA
ar48 0.224111 0.006656 33.67043 0
ma1 0.163874 0.036536 4.48532 0.000007 0.099387 0.00864 11.5028 0 0.053851 0.007282 7.3952 0 -0.65578 0.005039 -130.143 0
omega -3.37179 0.555154 -6.07362 0 -3.98474 0.254874 -15.6342 0 -3.69274 0.242565 -15.2237 0 -4.21921 0.310326 -13.596 0
alpha1 -0.03693 0.013468 -2.74182 0.00611 -0.03252 0.014009 -2.3216 0.020257 0.019952 0.013964 1.4288 0.153059 0.031251 0.043326 0.7213 0.470726
alpha2 0.072945 0.015192 4.8017 0.000002
beta1 0.523679 0.078221 6.69487 0 0.429816 0.036093 11.9085 0 0.478853 0.033833 14.1532 0 0.364014 0.045439 8.0111 0
gamma1 0.527371 0.024826 21.24277 0 0.535835 0.024914 21.5072 0 0.565755 0.024019 23.5546 0 0.545066 0.034582 15.7615 0
gamma2 -0.01774 0.058668 -0.30238 0.762362
vxreg1 1.717445 0.29188 5.88408 0 2.002015 0.150248 13.3248 0 1.877735 0.14493 12.9562 0 1.677838 0.150853 11.1223 0
skew 0.91524 0.0082 111.6151 0 0.896903 0.007439 120.5655 0 0.916996 0.00779 117.717 0 0.868179 0.008438 102.8936 0
shape 4.273989 0.140119 30.50257 0 4.164093 0.130771 31.8426 0 4.379142 0.141914 30.8578 0 4.216177 0.15069 27.9792 0

Log Likelihood 39777.38 39177.93 39787.56 35594.47
AIC -3.3005 -3.251 -3.3 -3.22

Q-stats on Standard Residuals
Q Stat p-value Q Stat p-value Q Stat p-value Q Stat p-value

Lag[1] 0.1956 0.6583 2.344 0.1258 1.666 0.1968 4.701 0.03014
Lag[p+q+1][26] 980.9653 0 990.49 0 462.064 0 1333.458 0
Lag[p+q+5][30] 985.0843 0 1029.682 0 511.148 0 1421.549 0
d.o.f=2
Ho: No serial correlation

Q-stats on Squared Residuals
Lag[1] 1.63E-05 0.9968 3.16E-05 0.9955 0.000552 0.9813 0.001015 0.9746
Lag[p+q+1][4] 0.00436 0.9474 0.00268 0.9587 0.002595 0.9594 0.002879 0.9572
Lag[p+q+5][8] 0.01027 1 0.1109 0.9998 0.039362 1 0.273425 0.9981
d.o.f=2

ARCH LM Test p-value
ARCH lag[2] 0.000548 0.9997 0.00071 0.9996 0.001282 0.9994 0.001824 0.9991
ARCH lag[5] 0.005857 1 0.004614 1 0.004791 1 0.004191 1
ARCHlag[10] 0.012582 1 0.114291 1 0.041281 1 0.301302 1

Nyblom stability test 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value
mu 0.1753 > 0.47 0.1098 > 0.47 0.04467 > 0.47 0.2448 > 0.47
ar1 0.8278 0.4663 0.46366 1.1626
ar2 0.7067 0.9254 0.63639 2.4304
ar6 0.9881 0.95098 3.5294
ar14 0.6205 0.8309
ar15 0.46778 0.5435
ar16 0.61625 0.2015
ar23 7.9611
ar24 16.6529 22.3167 19.116
ar48 7.7881
ma1 3.5762 2.9032 6.75176 7.4232
omega 0.4305 0.4808 0.45005 0.3555
alpha1 1.9778 0.6894 0.65814 0.5209
alpha2 1.6527
beta1 0.5576 0.6241 0.62549 0.4125
gamma1 0.2595 0.1857 0.23974 0.3883
gamma2 1.8546
vxreg1 0.3338 0.3857 0.37237 0.2557
skew 0.6112 1.7028 0.80041 0.1922
shape 0.1906 0.3116 0.17836 0.8611

Sign Bias Test
Sign Bias 0.3061 0.3299 0.3229 0.2742
Negative Sign Bias 0.8827 0.9588 0.9667 0.6138
Positive Sign Bias 0.8191 0.8271 0.9938 0.9412
Joint Effect 0.7425 0.8 0.7636 0.6797

Sign Bias, testing the null hypothesis that no asymmetry remains in the residuals - * = reject the null with low significance, ** = moderate significance, *** = high significance



Table 6 - Results from selected model specifications and corresponding fit diagnostics
GARCH eGARCH(1,1) 1w eGARCH(1,1) 3w eGARCH(1,1) 5w eGARCH(1,1) 7w
Mean ARMA(24,1) ARMA(24,1) ARMA(24,1) ARMA(24,1)
Dist sstd sstd sstd sstd
Regressors xternal reg: max wind/max load xternal reg: max wind/max load xternal reg: max wind/max load xternal reg: max wind/max load
Data Set lndiffwinter lndiffwinter lndiffwinter lndiffwinter
Parameters

Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)
mu 8.26496 0.00451 1834.72269 0 8.26520 0.00104 7956.94805 0 8.26548 0.00143 5791.95880 0 8.26512 0.00135 6136.73710 0
ar1 0.32524 0.03141 10.35352 0 1.24491 0.01747 71.26728 0 1.24853 0.00899 138.87950 0 0.39644 0.01702 23.29390 0
ar2 -0.04672 0.01838 -2.54169 0.011032 -0.52048 0.00950 -54.78791 0 -0.52391 0.00478 -109.52170 0 -0.12316 0.01023 -12.03980 0
ar3 -0.05218 0.00493 -10.57446 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar4 -0.01601 0.00716 -2.23538 0.025392 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar5 -0.02573 0.00825 -3.12049 0.001805 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar6 -0.05096 0.00573 -8.89850 0 -0.12261 0.01052 -11.64971 0 -0.09684 0.00279 -34.76480 0 -0.09387 0.00420 -22.37620 0
ar7 -0.04615 0.00446 -10.34266 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar8 -0.07170 0.00552 -12.98597 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar9 -0.03525 0.00725 -4.86405 0.000001 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar10 0.01804 0.00550 3.28056 0.001036 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar11 0.00218 0.02225 0.09810 0.921856 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar12 -0.02877 0.01141 -2.52238 0.011656 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar13 -0.01333 0.00651 -2.04704 0.040655 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar14 -0.02216 0.00454 -4.87720 0.000001 -0.03627 0.09094 -0.39885 0.690001 0.00000 NA NA NA 0.00000 NA NA NA
ar15 -0.07684 0.00531 -14.46145 0 -0.10031 0.16924 -0.59271 0.553374 0.00000 NA NA NA 0.00000 NA NA NA
ar16 -0.05803 0.00518 -11.19958 0 -0.01450 0.00942 -1.53844 0.123942 -0.15385 0.00497 -30.95040 0 0.00000 NA NA NA
ar17 -0.03584 0.00386 -9.29111 0 0.02815 0.15951 0.17649 0.859911 0.04337 0.00525 8.25410 0 0.00000 NA NA NA
ar18 -0.02399 0.00330 -7.26981 0 -0.04835 0.09064 -0.53344 0.593729 0.00000 NA NA NA 0.00000 NA NA NA
ar19 -0.00900 0.00313 -2.87711 0.004013 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar20 -0.02937 0.00387 -7.58399 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar21 -0.04340 0.00463 -9.36537 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar22 -0.05843 0.00593 -9.85083 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar23 0.14919 0.00576 25.89080 0 0.00000 NA NA NA 0.00000 NA NA NA 0.00000 NA NA NA
ar24 0.37523 0.01861 20.16757 0 0.00000 NA NA NA 0.00000 NA NA NA 0.53674 0.01198 44.80990 0
ma1 0.29462 0.03837 7.67753 0 -0.55054 0.01870 -29.43483 0 -0.54364 0.01769 -30.73360 0 0.23875 0.01325 18.01520 0
omega -1.65609 0.51493 -3.21613 0.001299 -2.81362 0.43148 -6.52080 0 -2.66448 0.24759 -10.76170 0 -0.61061 0.04787 -12.75600 0
alpha1 0.06176 0.10582 0.58366 0.559451 0.12766 0.02875 4.44061 0.000009 0.13736 0.03109 4.41840 0.00001 0.05521 0.00816 6.76910 0
beta1 0.77305 0.07031 10.99530 0 0.58321 0.06440 9.05554 0 0.60224 0.03755 16.03970 0 0.91520 0.00667 137.28730 0
gamma1 0.46940 0.03689 12.72370 0 0.45715 0.02973 15.37710 0 0.44601 0.02452 18.19160 0 0.26538 0.03116 8.51790 0
vxreg1 0.80425 0.28259 2.84601 0.004427 1.03064 0.17061 6.04110 0 0.95149 0.10646 8.93750 0 0.30268 0.03031 9.98620 0
skew 0.97318 0.02593 37.53559 0 0.98776 0.01307 75.59946 0 0.99673 0.01069 93.26880 0 0.97123 0.00984 98.66860 0
shape 5.18995 0.43033 12.06032 0 6.12496 0.40912 14.97110 0 6.30346 0.40915 15.40620 0 5.28588 0.24680 21.41810

Log Likelihood 39471.35 36266.92 35884.76 38197.5
AIC -3.63 -3.33 -3.3 -3.51

Q-stats on Standard Residuals
Q Stat p-value

Lag[1] 0.05174 0.8201 1.244 0.2647 1.186 0.2761 0.2559 0.613
Lag[p+q+1][26] 158.2205 0 462.023 0 908.967 0 346.1798 0
Lag[p+q+5][30] 161.0503 0 482.706 0 934.098 0 348.1125 0
d.o.f=2
Ho: No serial correlation

Q-stats on Squared Residuals
Lag[1] 3.53E-05 0.9953 9.98E-05 0.992 0.000113 0.9915 2.46E-05 0.996
Lag[p+q+1][4] 0.000227 0.988 0.000286 0.9865 0.00033 0.9855 0.000261 0.9871
Lag[p+q+5][8] 0.000684 1 0.00246 1 0.001564 1 0.000748 1
d.o.f=2

ARCH LM Test p-value
ARCH lag[2] 7.94E-05 1 0.000195 0.9999 0.000218 0.9999 0.000102 0.9999
ARCH lag[5] 0.000506 1 0.000565 1 0.000667 1 0.000559 1
ARCHlag[10] 0.000937 1 0.002579 1 0.001631 1 0.001069 1

Nyblom stability test 5% Critical Value 5% Critical Value 5% Critical Value 5% Critical Value
mu 0.07988 > 0.47 0.6571 > 0.47 0.66722 > 0.47 0.05635 > 0.47
ar1 1.11095 0.113 0.15546 0.79167
ar2 1.40329 1.4758 1.37081 1.66565
ar3 1.00087
ar4 0.23939
ar5 0.56649
ar6 0.87125 2.1773 1.30555 0.88849
ar7 0.75322
ar8 0.46424
ar9 0.65699
ar10 0.05668
ar11 0.04249
ar12 0.27238
ar13 0.17061
ar14 0.03807 0.4987
ar15 0.24897 1.2251
ar16 0.12615 0.6443 0.56098
ar17 0.07258 0.163 0.07427
ar18 0.02474 0.1181
ar19 0.03485
ar20 0.05944
ar21 0.05887
ar22 0.01903
ar23 4.15071
ar24 15.04007 18.47509
ma1 1.62329 0.3163 1.54385 4.37791
omega 1.15576 1.1665 1.15571 0.79972
alpha1 1.79752 3.3237 3.66622 2.15562
beta1 0.80418 1.0076 1.02505 0.57822
gamma1 1.86549 0.7898 1.02085 2.97351
vxreg1 1.90548 1.8219 1.78223 1.31965
skew 0.28224 2.1116 1.89985 0.47843
shape 0.5363 0.383 0.2424 0.54674

Sign Bias Test
Sign Bias 0.4355 0.3596 0.3539 0.4193
Negative Sign Bias 0.9837 0.9818 0.9868 0.9821
Positive Sign Bias 0.6146 0.9893 0.9226 0.6647
Joint Effect 0.7614 0.8112 0.7898 0.7773

Sign Bias, testing the null hypothesis that no asymmetry remains in the residuals - * = reject the null with low significance, ** = moderate significance, *** = high significance
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Part III

Cost Minimization of Power Generation with

Intermittent Resources and Energy Storage
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Introduction

Many countries and 30 U.S. states plus the District of Columbia have implemented renewable

portfolio standards (RPS) that, combined with federal incentives, are driving investment in wind

and solar power [US EIA, 2012]. Even states without RPS have experienced growth in renewable

energy production as a result of just the federal incentives. Futhermore, although sensitive to cost,

price and policy assumptions, the Annual Energy Outlook 2014 Reference Case projects U.S.

renewable electricity generation to increase by 69% by 2040 [Conti et al., 2014]. Perhaps more

importantly, wind penetration is targeted by the US Department of Energy to increase to 20% by

2030 [O’Connell and Pletka, 2007] and is on a path to achieve that goal [Wiser and Bolinger, 2014].

At these levels, intermittent energy resources such as wind and solar are creating new challenges

for energy system operators. For example, twice in recent years, high wind power output coin-

cided with high spring river flows (and thus hydropower output), creating an oversupply situation

for Bonneville Power Administration (BPA) [US EIA, 2011]. Carrasco et al. [2006] concluded that

energy-storage systems improve the technical performance and economic viability of wind power,

particularly when it exceeds about 10% of the total system energy. Although research proceeds on

a variety of fronts including storage technologies such as batteries, fuel cells, and hydrogen con-

version, viable energy storage world-wide is currently dominated by pumped-storage hydropower

(PSH). Nevertheless, application of energy storage in the U.S. has seen limited application [Den-

holm et al., 2013].

Quantifying the value of storage remains a significant challenge as the costs and benefits of

storage are not well understood [Sioshansi et al., 2012]. There is a need for a general model that

represents the actual value of using storage to balance intermittent resources and to arbitrage

energy, as well as capture the effect of storage on the energy market. Energy storage studies

are largely based on exogenous pricing, historic data, and incomplete methods of studying how

wind energy affects the economics of storage. The result is that there is little understanding as

to how additional storage entering the power market will affect prices, which adds to the already

substantial uncertainty facing PSH developers. To improve on previous studies, the objective of

this study is to build an optimization/simulation unit commitment model for scheduling storage

operations that incorporates: a) pump/turbine efficiency to model design trade-offs; b) uncertainty
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due to intermittent power production (in the form of net load); and c) time-scale decomposition for

handling design and operational details on the appropriate time scales and achieving a reasonable

level of computational efficiency. The model in this chapter is a static mesoscale optimization that

incorporates demand uncertainty and uses simulated demand projections developed in chapter

II to calculate optimal storage investments given existing grid conditions. The results provide the

PSH design parameters for the simulation in chapter IV.

To achieve this objective, an analytical economic model that describes the economic equilib-

rium conditions of energy storage taking into account variable generation is developed. The model

is used to characterize the cost-minimization problem and describe the net value of shifting energy

from one period to another in terms of marginal cost. Additionally, it is demonstrated how use the

characteristics of the supply curve and exogenous demand time series to develop policies to take

advantage of the variability of wind power resources. A case study is developed using pumped

energy storage in the federal hydropower system under BPA’s control as a way to mitigate extreme

wind fluctuations.

The literature touches on the economics of energy storage and variable energy but not in a

comprehensive way. Many models incorporate specific regulatory or market assumptions that limit

their applicability. Reuter et al. [2012] set their investment model in Germany/Norway and include

investment subsidies that do not exist everywhere. Kim and Powell [2011] make a significantly

limiting assumption that the storage facility is small in the economy. Benitez et al. [2008] includes

both wind and storage but bases the value of storage on reduction in CO2 with perfect information.

Only recently, general storage sizing and pricing models have begun to emerge [Lamont, 2013;

Chao, 2011], but fail to address details such as scheduling uncertainty and the role of variable

energy resources [Lamont, 2013; Connolly et al., 2011; Crampes and Moreaux, 2010] or of storage

technologies [Ambec and Crampes, 2012; Chao, 2011; Botterud et al., 2005].

The model derives the equilibrium condition of a cost-minimizing energy producer making in-

vestment decisions. The model in this chapter combines the long-term attributes of storage and

intermittent energy generation in a more general way than previously found in literature. The model

extends the analysis originally performed by Crampes and Moreaux [2010], who first examined the

intertemporal economic efficiency of pairing bulk storage with thermal generation (but not intermit-

tent generation). Ambec and Crampes [2012] did similar analysis of intermittent generation paired
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with thermal generation. Chao [2011] calculated the efficiency conditions of intermittent generation

with thermal generation and stochastic, price-dependent load. Lamont [2013] did similar analysis

based on minimizing system cost and demonstrated the effect of storage on wholesale price, and

this paper adds to his analysis by making certain real-world assumptions about operations policy

and examining the inter-temporal effects of changing variance in net load. The model uses a sim-

ilar framework as in Chao [2012], adding storage technology along with intermittent generation.

Conclusions are drawn about efficient investment in storage relative to system generation assets

and expected demand.

In Section 2, the power system being modeled and the cost minimization problem is presented.

The efficiency conditions and discussion are presented in Section 3. An application of the results,

based on the simulated net-load from the GARCH model presented in Chapter II, is presented

in Section 4, and Section 5 concludes this chapter. Detailed equations and proofs are in the

appendices at the end of this chapter.

Methodology

General Description

Stochastic unit commitment is the process of deploying generation assets to meet expected de-

mand at the lowest cost. The cost minimization model is applied to dynamic unit commitment

models, like the one in Chapter IV, as well as static models that minimize costs over time con-

sidering the average conditions of the system. In this chapter a static cost minimization model is

developed that minimizes the costs of a generic power generation system that includes storage

over a set of expected demand states based on net load conditions in the Bonneville Power Ad-

ministration (BPA) balancing area. It is given that the system is constrained to meet an exogenous

power demand. The efficiency conditions derived from this model are used to calculate optimal

capital investments as well as the expected value of using storage to shift energy from one demand

state to another.

The power generation system is specified as a set of n generation technologies and one stor-

age technology, all under the control of a central system operator. The objective of the system
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operator is to meet an exogenous demand, Dt , in each timestep at minimal cost. The capacities

of the pump/turbine used for pumped storage hydropower and the storage facility are decision

variables, as are levels of storage deployment.

Demand is a stochastic process and accounts for both intermittent power generation and con-

sumer demand, both of which are stochastic quantities. Net load is the quantity used here as

demand, and is the difference between consumer demand and wind power generation in the BPA

balancing area, as described in the GARCH formulation of Part II. This formulation does not create

a clear separation between demand side and supply side economics of the problem, but is reason-

able because it is a regulatory constraint on most power supply systems that wind power must be

fully utilized when it is available. Thus, wind power production is not a decision variable. Neither

consumer demand nor wind power generation are assumed to be price responsive or otherwise

correlated with each other. It is a limitation of this approach not to model wind power capacity

directly as a decision variable. However, wind power capacity is indirectly modeled by the regres-

sion of wind penetration with net load GARCH model, and it was shown that scenarios on forecast

values of wind penetration can be generated with the GARCH model of Chapter II.

The mix of generation resources available to meet demand defines the system supply curve

based on merit order dispatch. Merit order dispatch refers to the principle that, under economi-

cally efficient conditions, generation resources are dispatched in the order of least marginal cost

to highest, resulting in an increasing supply curve. The unit cost of power generation is not contin-

uous with increasing production because of the merit order dispatch of generators with costs that

are modeled as constant over their operating range and that are significantly different than each

other. For simplicity, generation supply is illustrated here as an increasing, concave upwards func-

tion of total production, Q(•). Realistically, the curve would not be smooth or continuous, but would

contain vertical jumps at the points where expensive peaking power is deployed. These character-

istics are evident in the dispatch curves compiled by the U.S. Energy Information Administration,

such as the one at U.S. EIA [2012] for example.

Storage as a supply-side quantity requires additional consideration. Given an increasing sys-

tem supply curve describing conventional generation resources, discharging (that is, generating)

from storage serves to increase supply while charging (or pumping, in the case of PSH) serves to

decrease it. However, pumping and generating do not shift the supply curve uniformly. Pumping,
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Figure 13: The generation supply curve is shifted to the right, representing an increase in available
generation, where generation from storage enters the supply merit order. The entire supply curve
is shifted to the left when pumping to storage effectively removes generation from the supply curve
and results in an increased marginal price at the origin.

when considered as a supply-side quantity, reduces the supply available to meet demand. The

effect is to shift the demand curve inward, or to the left. However, the marginal cost of generating

from storage is often lower than the marginal technology, and thus may alter the shape of the

supply curve by shifting a portion of the curve such that c > cs to the right, while leaving the rest

unaltered. (See Figure 13.) Correspondingly, the right-hand terminus of the curve is shifted to

represent the resulting increase or decrease in available supply to meet demand.

Electricity demand is not consistently price responsive and is modeled here as completely

exogenous. Exogenous demand curves are vertical and system marginal cost (SMC) is thus the

point on the system curve that intersects demand = Dt (Figure 13). Since energy producers are

constrained by regulation to meet that demand, this is a useful approximation. For each time step

t a new, vertical demand curve is defined at Dt . The stochastic nature of net load, which is our

demand quantity, means that a probability distribution function is defined for each time step for

Dt . This stochastic character is used to evaluate the expected value of the cost of generation

taking into consideration the time-dependent variance in Dt at each time step using the process

described below.
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Temporal Context

This expected cost model is calculated at a time scale defined by the length of the storage cycle the

storage system is designed for. In this model, the storage cycle is defined to be the time required

to fill and then empty the storage reservoir. The hours during the storage cycle used for filling and

emptying, respectively, need not be contiguous, but are cumulative within one cycle. The length

of the storage cycle is determined by two factors: the power capacity of the pump/turbine and

the energy capacity of the storage reservoir. The energy capacity of the reservoir is synonomous

with water volume based on the well-defined power function governing the conversion of power

to water flow over a vertical displacement. This power function and the selection of power and

energy capacity are discussed further below.

Because water reservoirs are costly, they are sized just to meet the energy storage needs of

the power system. This energy need defines the characteristic storage cycle based on hours of

power discharge. A typical PSH project will have as few as eight hours, and potentially hundreds

of hours, of discharge capability. The storage cycle is arrived at by considering the characteristics

of the power system - the periodic fluctuations in power price, the available hydrology, and the

variability the storage facility is intended to balance.

The system modelled here is heavily dependent on hydropower and experiences small fluctu-

ations in peak-off peak pricing. In the supply curve used in this model, based on production costs

publsihed for the Northwest region, the differential between hydropower as the marginal generator

and natural gas is approximately 0.38 cents/kw-hr. Relative to other U.S. regions, this is quite

small. (See Section for further disucssion.)

Hydropower and natural gas, both of which can be used for peaking power, are very flexible

technologies and can alter operating levels on the order of minutes. In that sense, the primary

advantages of PSH is the ability of the pump/turbine to reverse modes and consume electricity, its

lower cabon footprint compared to natural gas, and the potential efficiency savings compared to

natural gas run at partial load. Moreover, hydropower in the BPA system is constrained seasonally

by environmental water needs which would not apply to most PSH. Thus, PSH as a peaking

generator adds flexibiltiy to the BPA fleet as well as potentially lowering costs.

Considering the seasonal need for flexibiltiy, the strong dependence on hydropower for peaking
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power, and the strong daily peaks in both summer and winter (as described in Chapter 2), the PSH

developed here operates on a daily cycle. In a daily cycle, PSH located in the BPA system can

take advantage of daily low load hour and high load hour pricing. In the optimization step the total

energy to be provided by the PSH will be determined.

Determining the minimum cost of the power system at any moment in time is straightforward,

but introducing energy storage creates an intertemporal relationship among variables. Given a

mix of generation resources and a power demand that defines the state of the system, it is eco-

nomically efficient to simply dispatch the generators according the merit order. The SMC is then

the cost to run the most expensive generator needed to meet demand. When utilizing storage, the

constraint that the energy storage must be depleted and recharged on a recurring basis creates

the intertemporal dynamic, first described by Crampes and Moreaux [2010]. The intertemporal

connection between generating and pumping from PSH is modeled by the constraint that energy

stored by pumping must equal energy discharged by generating over the course of a storage cy-

cle. The physical limitation that pumping and generating cannot occur simultaneously is enforced

in the mathematical model by the relative costs of pumping and generating and their resulting

positions in the merit order: this concept is discussed further below. Under ideal conditions, a

storage operator would consider demand and price forecasts and time the filling and discharging

of the energy reservoir to minimize system cost. This model averages those decisions over the

hours in the storage cycle and a discretized demand probability space, described below.

Assumptions and limitations

Because this is a static, aggregate problem it cannot represent the dynamic properties of power

production. Instead, it is intended to provide capacity guidelines given a long-term demand fore-

cast. This aggregation introduces certain assumptions into the problem, particularly as relates to

power dispatch dynamics. In this model, the generator fleet is assumed to be fully dispatchable.

Planned outages are not explicitly addressed, although capacity values can be scaled to implicitly

compensate for maintenance outages. Unscheduled forced outages are neglected. Furthermore,

merit order dispatch neglects the various physical limitations of certain generator technologies,

such as start up time, minimum run time, and ramping rates.
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The additional limiting assumption is made here that the characteristic energy storage cycle

is predetermined. A predetermined cycle length may be sub-optimal compared to an optimized

cycle length. However, using a predetermined cycle length is a reasonable simplificaiton consid-

ering that optimal operation decisions are a practical impossibility because of uncertain forecasts,

technical operating constraints that prevent economically efficient dispatch, and concurrent use

objectives, such as water supply for environmental services or consumption, that further constrain

the operating schedule.

Note that the cost of pumping is the cost of running the pump plus the cost of the marginal

generator providing the power to run the pump. Therefore pumping never fits into the merit order

dispatch under efficient condtions unless supply exceeds demand. In the absence of over-supply

conditions, the purpose of pumping is to balance generating that took place in another period. The

problem of over-supply is neglected in the main model formulation and is discussed briefly at the

end of the chapter.

It is further assumed that sufficient generation capacity exists to serve demand with 98% relia-

bility, and that storage is fully deployable at all times. Forced outages and tranmission congestion

are neglected by this assumption, but are beyond the scope of this model.

Scenario details

In this section the specifics of the mathematical model are outlined in detail. Table 8 provides a

rundown of the variables.

Generation Resources

The generation production fleet consists of n generation technologies and one storage technology

under the control of a central operator whose objective is to minimize cost and meet an exogenous

net demand for power at every hourly time step. Each of the n generators in the fleet has a unit

operating cost ci ($/MWh), assumed here to be constant over the operating range of the generator.

The installed capacity of each generator in the fleet is Ki (MW). Because of the merit order rank

based on unit cost, each generator is typically dispatched to its full capacity, Ki, except for the

marginal generator denoted d ∈ {1..n}, which generates at power level qd < Kd , determined by the
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production function Qi(D,Zi) defined below.

Energy Storage

Energy storage is treated separately from generation because it must be described both in terms

of power capacity as well as energy capacity. PSH is the storage technology of interest for this

paper, although it is not the only technology of commercial interest [Eyer and Corey, 2010]. PSH

stores energy by pumping water at a flow rate Q (m3/s) to a reservoir at an elevation H (m),

thus converting electrical energy to potential energy. When the water is released downhill, it is

converted by the turbine back to electric energy. Both pumping and generating incur efficiency

losses of µ j, where j indicates whether the storage is in pump or generating mode, j = {p,g}. As

a result, power converted to stored energy and back suffers a roundtrip loss of µpµg = µ.

Neither the power capacity fo the pump/turbine (which is the maximum charging rate) nor the

energy storage capacity dwarfs the other in terms of capital cost, and are considered separately

[EPRI, 1989]. The power capacity of a storage system is the rate of flow of energy that it is capable

of achieving. In the case of PSH power capacity is the nameplate capacity of the pump/turbine in

MW, Ks, which has a unit capital cost of rs dollars per megawatt installed ($/MW). The rated power

in pumping mode is not necessarily equal to the power rating of the generator. In this model, they

are taken to be the same because of the interest in long-term costs of storing energy rather than

the detailed operations, although specifying them separately based on manufacturer’s information

would not make the problem intractable. Pump/generation power, ∆̄ j, is the gridside power quan-

tity consumed/discharged (averaged over feasible operation hours) by the pump/turbine. In the

mathematical model, ∆̄ j ≥ 0 for both pumping and generating and is defined to be the average

power consumption or discharge over the period of feasible operations. Note that the defintion of

feasible operations for the pump/turbine in either mode can be variously defined, and is defined for

this model below. The unit cost of operating the pump/turbine is denoted cs ($/MWh). The energy

capacity of PSH is the physical volume of the reservoir, which implies the ability to generate power

for a time until the reservoir is empty. Energy capacity is denoted KE MWh at a unit cost of rE

dollars per megawatt-hour of energy ($/MWh).

The total efficiency of a pump/turbine is on the order of 80% to 92%. Efficiency losses can

58



be significant, particularly when considering that the total efficiency results in the need to pump

in excess of scheduled generation by a factor of µ. For this reason the efficiency of the pump is

considered separately from the efficiency of the generator. To relate the production of each to the

nameplate capacity of the pump/turbine, consider that nameplate capacity describes the useful

output of the pump/turbine for its intended use. In the case of generation, useful generation is the

gridside output, and thus Ks = ∆̄g. In the case of pumping, useful output can be described in terms

of the quantity of water pumped uphill. Given the general power equation,

P = γQH (6)

where P is power (MW), H is average head (elevation) over which the water transferred (m), Q

is water flow rate (m3/s), and γ is a constant with units kg m/s2, then useful pumping power is

Ks = γQH. The efficiency is then expressed in terms of gridside power and installed capacity by

writing the expressions for efficiency in terms of useful power output divided by total power input.

µg =
∆̄g

γQH
(7)

µp =
γQH
∆̄p

. (8)

This result demonstrates the inverse effect of efficiency in the relationship between energy

storage and gridside power output. Rearranging terms, two useful results are obtained. Given that

water stored in the reservoir creates a physical constraint that energy stored (pumped) must equal

energy discharged (through power generation), we get the result

γQHtg =
1
µg

∆̄gtg (9)

and

γQHtp = µp∆̄ptp (10)

where t j, j ∈ {p,g} is the portion of the cycle of t hours that each mode of the pump and turbine
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was in operation, and tp + tg ≤ t. Setting the righthand sides of the two equations equal yields

µ
∆̄p

∆̄g
=

tg
tp
. (11)

These results describe the operational interdependencies between power, efficiency and time.

For one, the energy discharged in each cycle (from the gridside perspective) will be reduced com-

pared to the power used in pumping by the factor µ. Given that energy is the product of power

and time, this increase in pumping energy may come in the form of increased average power

consumption compared to generating, increased time pumping compared to time generating, or

a combination. In the merit order constrained model, the time to generate and to pump is deter-

mined by the demand conditions underwhich it is economic to generate. Power therefore takes

an average value over this feasible operating period between zero and full capacity, adjusted for

efficiency, such that

0≤ ∆̄g ≤ Ks (12)

and

0≤ ∆̄p ≤ µpKs. (13)

It is useful to express pumping and generating power in terms of an average over the entire

storage cycle rather than just the feasible operaing period. Given that the model developed below

is a static representation, a dynamic constraint on pumping and generating that prevents them

from operating simultaneously is not required. Instead, the feasible operating period is defined

in section [ref] based on merit order and total time constraints which serve to effectively limit the

operations so that they are mutually exclusive. For this purpose, average generation output and

pumping power consumption are defined in terms of the fraction of the storage cycle during which

their operations are feasible.

∆g =


∆̄gt

′
g cs ≤ ci

0 cs > ci

(14)
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∆p =


0 cs ≤ ci

∆̄pt
′
p cs > ci

. (15)

Given that ∆̄ j is the average power deployed during the feasible hours and t
′
j is the fraction of

the storage cycle, t hours, during which operation is allowed, ∆g is the average power deployed

over the entire cycle. In terms of energy, this means

∆gt = ∆̄gt
′
gt = Energy Discharged (16)

The limits on pump/generator output, equations 12 and 13, and the definition of pump/generator

power from equations 14 and 15 combine to describe the physical operating constraints on the

pump/turbine. The energy constraints are stated in terms of the power equation (equations 9 and

10).

1
µg

∆gt = µp∆pt (17)

and

1
µg

∆gt ≤ KE . (18)

Ksand KE are decision variables and similarly must be constrained. To establish the maximum size

of the reservoir, the power rating of the generator is multiplied by projected time of generation per

cycle and converted to volume of water (Q∗ time) using equation 6. The result is

KE =
1
µg

Kstg (19)

where tg = t ∗t
′
g is the maximum amount of time the reservoir can discharge at rated capacity, which

from the energy constraint can be calculated to be tg = t
1/µg+1 .

Production Function Assuming merit order dispatch and allowing that the cost of generating

from storage, cs, may be less than the marginal generator, cd , then the sum of all generation
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Table 8: Summary of notation used in the cost minimization
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capacity up to generator i for all i ∈ {1..n} plus the storage operations is

Zi =
i

∑
j=0

K j−∆p +∆g, (20)

{Zi} for all i ∈ {1, ...,n} is a complete description of the supply curve given the possible dispatch

of pumping power or generating power. Note that the value of ∆g is constrained to be 0≤ ∆g ≤ Ks,

and its value is determined in the optimization based on the absolute value of cd and the length of

time it is operated. Zi is taken to be the average over the storage cycle, which becomes important

in the calculation of energy production in equation 21 below.

The quantity of power produced is a function of demand as well as the generators dispatched

since production is constrained to meet demand. Using the notation for Zi, the production function

Qi(Dt ,Zi) is the total amount of power produced by generators 1..i for i ∈ {1..n}.

Qi(Dt ,Zi) = min(Dt ,Zi) = min

(
Dt ,

[
i

∑
j=0

K j +∆g−∆p

])
(21)

The marginal generator is the generator d that is dispatched last to meet demand Dt . Based on

the definition of Qi and subscripting the marginal generator with subscript d, the demand quantity

will lie between two values of Zi such that Zd−1 < D≤ Zd .

Qd(Dt ,Zd) = Dt = min

(
Dt ,

[
d

∑
j=1

K j +∆g−∆p

])
(22)

To represent the quantity of power deployed by the marginal generator, we define

qd = Zd−Dt =
d−1

∑
j=1

K j +∆g−∆p−Dt . (23)

The use of the min function to define Qi causes the function to truncate at the value of Dt , regard-

less of which generator is marginal. Thus in any cost function that is a function of Dt , total power

produced can be specified in terms of Qn(Dt ,Zn) = min(Dt ,Zn) without loss of generality. In this

definition, the origin of the supply curve must be specified in terms of K0. Here, K0 = 0, such that,

when the first generator is the marginal generator, Dt < K1, qd = ∆g−∆p−Dt , and Q1 = qd . Q0

follows from equation 21. Note that K0 does not represent a generator and is not included in the
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set of all generators, i = {1..n}, but is a mathematical definition of the origin of the supply curve

required for the following result.

Referring to equation 21 and 23, it can be seen that the quantity of power produced by any one

generator i is the quantity

Qi−Qi−1 =


Ki Zi ≤ Dt

qi Zi−1 < Dt ≤ Zi

0 Dt ≥ Zi

(24)

The operating cost of meeting power demand Dt can then be written as unit cost of energy times

the output of each of the generators and the pump/turbine:

Ct(Dt) = t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)
(25)

Demand as a Stochastic Process Demand Dt is a stochastic process that does not depend

on any of the production variables. Therefore, the expected cost, Ct , of producing Qn(Dt ,Zn) is

the cost of operating the necessary generators multiplied by the expected value of Qn and can be

written as

E[Ct(Dt)] = E

[
t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)]
(26)

where E[•] is the expectation operator.

Net load is simulated from the GARCH model developed in Chapter II on an hourly basis

following the procedure in Chapter II. A daily storage cycle has been adopted based on the ob-

served periodicity of net load and a secondary objective of keeping the storage reservoir as small

as possible while providing peaking flexibility to the hydropower fleet. To capture the effect of the

large change in variance in the net load process from day to day, the conditional variances of the

GARCH model, σ2
t , conditioned on hourly data, are aggregated into daily values by taking the

sum of the intra-daily residuals, r2
i , following the procedure described in Andersen and Bollerslev

[1998].
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σ
2
t =

k

∑
i=1

r2
i (27)

over the k = 24 intra-daily time periods in one cycle. The innovations of the original model were

conditioned on the skewed Student’s t distribution developed by Hansen [1994] and this conditional

distribution is assumed to hold in the aggregate. The quantile distribution function of Dt is defined

on the aggregate variance (equation 27) and mean of the stochastic net load process over the

period of one storage cycle and discretized on the values of Zi, the individual generator capacities.

The quantiles are defined based on the generator capacities so that the discontinuities in the

supply curve do not affect the mean value of D defined on the intervals of the demand quantile

function. The value of Dt on the interval (Zi−1,Zi) is taken to be the expected value over the

interval. The quantile function is truncated at [0.01, 0.99], a conservative approach compared to

typical reliability standards that stipulate that reserves must be available to ensure 95% reliability

[Crow, 2008].

Given this definition of the quantile function, the expectation operator can be understood in

terms of the probability of each generator being the marginal generator, and summing over all

possibly values of d. Substituting the marginal generator designated by subscript d ∈ {1..i}, then

the expectation value can understood by writing the cost as being conditional on Zd−1 < Dt ≤ Zd .

E[Ct(Dt)] =
n

∑
d=1

[
t

(
(

d

∑
i=1

c(Qi−Qi−1)+ cs(∆g +∆p) | (Zd−1 < Dt ≤ Zd)

)
∗Pr(Zd−1 < Dt ≤ Zd)

]
. (28)

This single-period cost function is the basis of the total cost function, which includes unit capacity

costs, that is the objective function of the minimization developed below.

Cost Minimization Problem

a. Cost function

The single-cycle expected cost of power production is expressed by equation 26. Total cost is the

sum of single period costs over all cycles plus capacity costs.

65



E[Ct(Dt)] =
T

∑
t=1

E

[
t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)](t)
+ rsKs + rEKE , (29)

where the superscript t ∈ {1, ...,T} designates the individual cycle among T total cycles. The

minimum cost is arrived at, given generator capacities, Ki, by selecting storage capacities, KS and

KE , as well as storage operations in each cycle, ∆
(t)
g and ∆

(t)
p .

The physical and operating constraints for each technology were described in detail above, and

are summarized in Table 9. The equality constraints allow for substitutions that reduce to overall

number of constraints that must be included in the objective function. The equality relationship

between the capacity of the pump/turbine and the size of the reservoir combined with the equality

constraint between the energy stored and energy discharged in any given cycle allow the elimi-

nation of the upper bound on ∆p and the lower bounds on ∆g and KE , as well as the single-cycle

storage constraint (equation 18).

Using the superscript (t) to represent single-cycle values and expressing the series of pump/generation

decisions as a sum, the resulting optimization problem is therefore

min
Ks,KE ,{∆(t)

g ,∆
(t)
p }

E[Ct(Dt)] = (30)

min
Ks,KE

T

∑
t=1

min
∆g,∆p

E

[
t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)](t)
+ rsKs + rEKE

subject to

1
µg

∆gt = µp∆pt

KE =
1
µg

Kstg,

∆g/t
′
g ≤ Ks,

0≤ ∆p/t
′
p,
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Constraint Description

Eq. 12 0≤ ∆g

t ′g
≤ Ks

Generating power must be positive
and cannot exceed the nameplate capacity of the pump/turbine

Eq. 13 0≤ ∆p

t ′p
≤ µpKp

Pumping power must be positive and cannot exceed
the nameplate capacity of the pump/turbine, adjusted for efficiency

Eq. 17 1
µg

∆gt = µp∆pt Total energy stored must equal energy
discharged within the same cycle

Eq. 18 1
µg

∆gt ≤ KE
Total energy stored in one cycle cannot exceed

the capacity of the reservoir

Eq. 19 KE = 1
µg

Kstg
The pump turbine must be sized to fill the reservoir

within one storage cycle

0≤ Ks Capacity of the pump/turbine must be non-negative

0≤ KE Capacity of the reservoir must be non-negative

Table 9: Summary of operational and physical constraints

and

0≤ Ks.

This set of equations is formalized into an optimization problem in the following sections.

b. First order optimality conditions

To calculate the minimum of the cost function, the objective function (eq. 30) and the constraints

are combined below to form an augmented cost function, l(x̄, λ̄ ), and the necessary conditions

for a minimum solution, specifically the Karuhn-Kush-Tucker (KKT) condtions for sationarity and

feasibility, must be confirmed. Note that the constraints from eq. 30 have been rewritten so that

0 ≤ h(x) and the right-hand quantity is multiplied by a unique KKT multiplier and subtracted from

the cost function to form the augmented cost function.

l(x̄, λ̄ ) =
T

∑
t=1

E

[
t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)](t)
+ rsKs + rEKE (31)

−
T

∑
t=1

ξ
(t)
1 E[µ∆

(t)
p −∆

(t)
g ]
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−ξ2(KE −
1
µg

Kstg)

−
T

∑
t=1

γ
(t)
g E[KS−∆

(t)
g /t

′
g]

−
T

∑
t=1

λ
(t)
p E[∆(t)

p /t
′
p]

−λsKs

where x̄ is defined to be the vector of decision variables and λ̄ represents the vector of KKT

multipliers introduced in the augmented cost function, λ̄ = {ξ (t)
1 ,ξ2,γ

(t)
g ,λ

(t)
p ,λs}. (See Table 8.)

The KKT conditions apply to nonlinear functions that are differentiable at the stationary point x̄∗

such that ∇l(x̄∗, λ̄∗) = 0 on the feasible domain. x* is a local minimum if the necessary conditions

are met. The necessary conditions describe the conditions underwhich x̄∗ could be a minimum,

the first being that the gradient of the augmented cost function equals zero. Additionally, the

point x* must be feasible - that is, x* must satisfy each of the constraints, the KKT multipliers on

the equality constraints must be greater than or equal to zero, and the complementary slackness

condition is met. Formally, the KKT conditions are denoted in the offset below.
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Karush-Khun-Tucker Necessary Conditions f (x) = E[C(Dt)]

gi(x̄)is the set of inequality constraints such that 0≤ gi(x̄)

h j(x̄)is the set of equality constraints such that 0 = h j(x̄) (See table 9.)

l(x̄, λ̄ ) = f (x̄)−λ (gi(x̄)+h j(x̄))

Stationarity

∇l(x̄∗, λ̄∗) = 0

Primal Feasibility

0≤ gi(x̄)

0 = h j(x̄)

Dual Feasibility

λi ≥ 0 referring to the KKT multipliers on all inequality constraints

Complementary Slackness

λigi(x̄) = 0 for all inequality constraints

Combined with certain regularity conditions and second order conditions the point can be con-

firmed to be a minimum value of the function. The constraints are linear, which is the most restric-

tive of the regularity (constraint) conditions. This fact, along with the fact that the cost function is

linear in each of the decision variables, satisfies the second order condition that the original cost

function be convex. The feasible region has a well-defined lower bound, so if a feasible solution

exists it will be a global minimum of the cost function. The derivatives of the augmented cost

function are detailed in the attached Appendix A.
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Results

Economic efficiency conditions

Pumping and Generating The efficiency conditions for ∆g and ∆p for a single cycle are deter-

mined by setting the derivatives of the augmented cost function to zero.

E[t(cd− cs)] = E[ξ1 + γg/t
′
g] (32)

E[t(cs + cd)] = E[ξ1µp +λp/t
′
p]. (33)

Equation 32 gives the conditions under which generating is economically efficient. On the left hand

side of the equation, cs ≤ cd implies that generation from storage falls within the merit order and

results in a positive value. According to the KKT conditions, γg is constrained to be non-negative

at a minumum solution, and will be greater than zero when ∆g/t
′
g is equal to Ks, that is, when

generation is utilized to its maximum extent. The result is that, when generation is dispatched,

ξ1 is the difference between (t(cd − cs) and γg/t
′
g. Clearly, when generation is not dispatched to

capacity, ξ1 must be positive, but otherwise may be negative ifγg/t
′
g ≥ t(cd − cs). The multiplier γg

is the shadow value of additional generating capacity with respect to the pump/turbine. ξ1 is the

shadow value of additional generating when constrained by the quantity of energy stored. Positive

γg and ξ1 both imply that additional generating capacity would decrease the overall marginal cost

if it were available. When cd− cs is small relative to γg/t
′
g, the cost of pumping limits the benefits of

additional generation capacity.

λpis the multiplier on the lower pumping constraint with respect to pump/turbine capacity. Be-

cause energy stored by pumping must equal energy discharged by generating, λp > 0, true when

∆p = 0 for the period, implies γg = 0. The cost of pumping cs + cd is always positive (neglecting the

oversupply condition where cd is negative) so that when storage is utilized within a period, ξ1 must

be positive. Combining equations 32 and 33 demonstrates the relationship between the cost of

pumping and the benefit of generating.

t (E[cd− cs]−E[cs + cd ]) = E[ξ1(1−µp)+ γg/t
′
g−λp/t

′
p] (34)
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The righthand side of equation 34 is the net benefit of storage operations - the difference

between the marginal benefit of generating and the marginal cost of pumping. When the benefit

of generating is small and the RHS is negative, either ξ1 must be negative or λp must be positive,

meaning that storage is not employed at all. When the RHS is positive, implying that the net benefit

of storage operations is positive for the period, then γg/t
′
g ≥ ξ1(1−µp). If γg > 0, then ξ1 > 0 as well,

given the result above.

If γg = 0, then two results are possible: first, ∆g is dispatched to partial capacity, implying that

ξ1 ≥ 0 and λp = 0. Thus, ξ1 is the shadow value of the energy arbitrage opportunity. If ∆g = 0,

λp ≥ 0 and ξ1 reflects the sum of the net marginal benefit of storage operations plus the shadow

value of reducing pumping activity, meaning the net marginal benefit of storage operations were

not large enough to make pumping efficient. If the marginal cost of generation, cd , is lower than

the cost of generating from storage, it would be costly to generate from storage at any level, and

thus ξ1 ≤ 0.

Given the merit order definition of the problem stated above and the result that either λp or γg

must be zero in each period, the values of λp, γg, and ξ1 can be deduced from equations 32 and

33 when the expected marginal cost is known. This result is utilized in the computation in section

[ref].

The derivatives with respect to storage capacity are

rs = λs−ξ2
tg
µg

+
T

∑
t=1

γ
(t)
g (35)

rE = ξ2. (36)

The value of new storage is determined by the sum of the marginal shadow values of additional

generation capacity and the shadow cost of additional pump/turbine capacity. Note that λs > 0

when Ks is constrained at its lower bound, Ks = 0, and thus will only be greater than zero when γg

is zero in all time periods.

Note that the marginal benefit of operating storage is composed of two types of terms: γg and

λp are shadow costs that make up the value of additional capacity, as seen in equations 35 and

36. Additionally, the ξ1 terms are the shadow values that determine the value of energy arbitrage.
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Figure 14: Simulated daily net load scaled to BPA forecasted monthly loads with 98% and 50%
confidence intervals. The bottom frame is a sample of the data from which the simulated data was
generated for comparison.

Application

Daily net load, aggregated from the hourly simulation data presented in the last chapter, and

scaled to forecasted average monthly loads from the 2010 rate case.

Daily observations will follow a weak GARCH process similar to the original hourly model

[Andersen and Bollerslev, 1998], and the skewed Student’s t distribution from the original model

is assumed to hold for these data. Given the capacity values, Ki, for the four generation sectors

in Table 10, the probabilities of demand falling between two values of Zi, and thus the probability

of system marginal cost being ci, are calculated using rugarch utilities. The expectation of cd and

therefore the expected costs of using storage are calculated for each period, and equations 32

through 36 provide the framework for determining the shadow values of storage and the value of

storage in this system.
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Figure 15: Simplified supply curves used in the model calculation, developed using BPA data.
[2010 Rate Case, EIA, 6th Power Plan]

Generator Merit Order Unit Operating Cost3 Unit Installed Cost
Hydropower varies monthly1 0.047 $/kw-day 3000 $/kW installed

Nuclear 1097 MW2 0.073 5500
Coal 1942 MW 0.182 3794

Natural Gas 7635 MW 0.185 1112.5
1. Hydropower is constrained due to water demands at various times of the year. The availablility of hydropower is
determined for BPA rate case development based on the 1958 water availability, adjusted for current installed capacity.
The monthly estimates used here were adapted from BPA [2010].
2. Installed capacity in the Northwest as reported in EIA [2010]. No adjustment has been made for forced or planned
outages.
3. Unit costs are adapted from the modeling assumptions of the NWPCC 6th Power Plan [NWPCC, 2012].

Table 10: Generation parameters used to calculate the conditional probabilities on demand:
Pr(Zi−1 < D≤ Zi).
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Figure 16: Power quantities over simulation period, assuming 10 MW installed pump/generator
capacity.

Multipliers - γg is the marginal value of additional capacity available for pumping or generating,

which would reduce the cost of power generation. In particular, pump/gen capacity is valuable

when the time for either pumping or generating is short. Conversely, ξ1 is the marginal value of

energy arbitrage. The value of arbitrage is affected primarily by the amount of time available for

both pumping and generating. A positive value of ξ1 implies a reduction in marginal cost with an

increase in pumping. From Figure it can be seen that arbitrage is most valuable when pumping

costs are lowest - that is, when hydropower is plentiful. γg and ξ1 give the complete picture of the

potential for obtaining value from pumped storage.

Generation from storage was calculated based on the available time for pumping and storage

and an assumed cap of 10 MW of pump/generation capacity. When γg is zero, generation ∆g is

likewise zero because it is never economic to deploy PSH at less than full capacity. Given ∆g, total

revenue and total arbitrage value was calculated. Revenue and arbitrage value are often different

because a positive net marginal benefit, which translates to revenue, is based on λp, γg, and ξ1,

such that arbitrage value is less than revenue when the quantity of power arbitraged is limited by

capacity. Meanwhile, revenue also depends on the marginal costs within the range of variability of

the net load.
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Figure 17: Time series of KKT multipliers associated with energy arbitrage and pump/generator
capacity.

Storage Capacity

Given the results from the simulation, the E[cs− cd ] and E[cs + cd ] prescribe a shift in the
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Appendix A

Augmented Cost Function

l(x̄, λ̄ ) =
T

∑
t=1

E

[
t

(
n

∑
i=1

ci(Qi−Qi−1)+ cs(∆g +∆p)

)](t)
+ rsKs + rEKE (37)

−
T

∑
t=1

ξ
(t)
1 E[µ∆

(t)
p −∆

(t)
g ]

−ξ2(KE −
1
µg

Kstg)

−
T

∑
t=1

γ
(t)
g E[KS−∆

(t)
g /t

′
g]

−
T

∑
t=1

λ
(t)
p E[∆(t)

p /t
′
p]

−λsKs

Derivatives with respect to short-term decisions: the augmented cost function for each time

step (storage cycle) has a set of derivatives given that the quantile function of demand varies with

time.

∂ l

∂∆
(t)
g

= E[t(cs− cd)]+ξ1 + γg/t
′
g]

∂ l

∂∆
(t)
p

= E
[
t(cs + cd)−ξ1µp−λp/t

′
p

](t)
Derivatives with respect to long-term decisions: two derivatives of the augmented cost function

exist based on pump/turbine and reservoir capacity

∂ l
∂KE

= rE −ξ2
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∂ l
∂Ks

= rs−λs +ξ2
tg
µg
−

T

∑
t=1

γ
(t)
g

Derivatives with respect to Lagrange multipliers: derivatives of the augmented cost function

exist for each time step for the multipliers ξ
(t)
1 , γ

(t)
g , and λ

(t)
p , along with multipliers that apply to long

term conditions, ξ2 and λs.

∂ l

∂ξ
(t)
1

=−E
[
µp∆

(t)
p −∆

(t)
g

]

∂ l
∂γ(t)

=−E
[
Ks−∆

(t)
g /t

′
g

]

∂ l

∂λ
(t)
p

=−E
[
∆
(t)
p /t

′
p

]

∂ l
∂ξ2

=−
[

KE −
1
µg

Kstg

]

∂ l
∂λs

=−Ks
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