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Abstract

In stratified reservoirs, both dam tailwater discharge and thermal plant intake wa-
ter quality and temperature can be highly dependent on structure depth. A two-
dimensional laterally-averaged model allows for better prediction of water quality over
time at specific depths. Because high-fidelity models are typically too computationally
expensive for direct inclusion within optimization algorithms, water quality is incor-
porated using one dimensional models are simple flow requirements. Water quality
predictions can be incorporated within the optimization process through using surro-
gate modeling methods, in this application artificial neural network (ANN) models.
ANNs are flexible machine learning tools for function approximation composed of a
structure of neurons assembled within a multi-layer architecture. They are capable
of handling large amounts of training data and modeling nonlinear dynamic systems,
making ANNs a well-suited method for this application. This report illustrates the de-
velopment of ANN models to emulate the hydrodynamic and water quality modeling
capabilities of the high-fidelity, two-dimensional CE-QUAL-W2 (W2) model, as well
as a linked riverine reservoir system optimization process which accounts for energy
generation, water balance and hydraulics, and compliance point water quality. A pro-
cess for hourly hydropower generation planning is demonstrated on a pair of reservoirs
linked in series. The two reservoirs are U.S. Army Corps of Engineers projects with
hydropower capabilities on the Cumberland River near Nashville, Tennessee, USA. The
content presented here is largely a combination of technical papers previously presented
at the HydroVision International conference (Shaw et al., 2015, 2016).
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1 Motivation

As computing capabilities improve, high-order multi-dimensional models have been devel-
oped to simulate the hydrodynamic and water quality behavior of waterbodies. These models
can be particularly useful for controlled reservoirs with hydropower capabilities. In stratified
reservoirs, water quality at points of importance in the reservoir, including dam tailwater
and thermal plant intake locations, can be dependent on structure depth and dam oper-
ations. Using well-calibrated models, operators have the ability to test various operating
schemes and observe impacts on water quality, providing more informed guidance during
the decision-making process. Unfortunately, models that tend to produce minimal errors
tend to be computationally expensive (Bates et al., 2005). This limits the ability to apply
mathematical techniques such as optimization and other decision-making processes. Linking
a series of such models can also be prohibitively computationally expensive. The computa-
tional limitations of using high-order reservoir models can be reduced by developing surrogate
models, which can extend the range of results of a computationally expensive model, allow-
ing users to predict model outputs at a lower cost. The goal is to produce a surrogate model
that is computationally more efficient than the original model, but still provides accurate
predictions at select distances from known data points (Forrester et al., 2008).

This paper describes water quality surrogate model development for a controlled river-
ine system in series with hydropower capabilities on the Cumberland River, operated by the
U.S. Army Corps of Engineerings (USACE) Nashville District. Cordell Hull and Old Hickory
reservoirs are presently modeled using CE-QUAL-W2 (W2), a two-dimensional high-fidelity
hydrodynamic water quality model that has been extensively studied and verified (Portland
State University , 2007). W2 can be used as a decision support tool for operators and is
particularly useful for modeling vertically-stratified waterbodies, but is not well-structured
to support everyday decision-making. Additionally, it does not provide the means for de-
termining optimal dam release patterns subject to constraints. Development of an efficient
surrogate model capable of accurately predicting hydrodynamic and water quality results of
interest to the system‘s stakeholders enables model execution for applications such as opti-
mization for which W2 is not properly structured. Time-dependent artificial neural network
(ANN) models are able to accurately emulate W2 water quality after being trained using a
family of W2 simulations.

This paper details the development of an optimization routine which determines hourly
control decisions for the linked-reservoir system. This routine combines stakeholder objec-
tives and constraints with genetic algorithms (GAs), a family of heuristic global optimizers,
and nonlinear autoregressive with exogenous inputs (NARX) ANN surrogate models in or-
der to determine optimal spill and turbine discharge patterns during times of water quality
stress. This work represents a segment of a larger research effort, the objective of which is
to perform rule-based simulation and optimization for determination of flow releases from
hydropower turbines and control structures along riverine systems subject to constraints
on power production, navigability, temperature, water quality, and flooding (Smith Sawyer
et al., 2013).
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2 Literature Review

2.1 Optimization of Hydropower-Equipped Reservoir Systems

Various techniques have been employed for hydropower optimization. Early studies employed
linear programming (LP) (Crawley and Dandy , 1993; Ponnambalam et al., 1989; Seifi and
Hipel , 2001), which entails short computational times but requires functions to be linear
or linearizable. This is often not the case for hydropower generation problems. A step up
from LP, nonlinear programming (NLP) algorithms do not have the linear function require-
ment. This is a broad family of techniques which includes sequential linear programming
(SLP) (Barros et al., 2003; Grygier and Stedinger , 1985), sequential quadratic programming
(SQP) (Tejada-Guibert et al., 1990), the augmented Lagrangian method (also known as the
method of multipliers, MOM) (Arnold et al., 1994; Finardi and Scuzziato, 2013; Naresh and
Sharma, 2002), and the generalized reduced gradient method (GRG) (Unver and Mays ,
1990). NLP requires all functions to be differentiable, which may not be the case for hy-
dropower systems. Dynamic programming (DP) methods have been popular in hydropower
optimization tool development due to their ability to handle nonconvex and discontinuous
functions and structure which emulates the multistage decision-making process involved in
reservoir system operations(Labadie, 2004). The “curse of dimensionality” arises in these
types of problems, which has led to various DP modifications to lessen the computational
time of high-dimensional problems. Optimization of many linked reservoirs becomes com-
putationally infeasible using the original DP formulation, which is the reason much of the
hydropower optimization by DP literature involves modified DP approaches(Castelletti et al.,
2007; El-Awar et al., 1998; Yi et al., 2003; Yurtal et al., 2005; Zhao et al., 2014).

More recently, heuristic programming methods have become popular for investigating
hydropower optimal operating patterns. In contrast to earlier algorithmic methods, heuris-
tic techniques are less-structured and can rely on both quantitative and qualitative infor-
mation. Convergence to an optimal solution cannot be guaranteed, but for complicated
problems these techniques may be capable of finding global optimums where algorithmic
methods converge to local optimums (Rani and Moreira, 2010). Evolutionary methods in-
clude genetic algorithms (Ahmed and Sarma, 2005; Oliveira and Loucks , 1997), simulated
annealing (Teegavarapu and Simonovic, 2002; Chiu et al., 2007)], and particle swarm op-
timization (Kumar and Reddy , 2007). Fuzzy set theory, which is designed to account for
imprecision and uncertainty, has been used for stochastic reservoir optimization applications
(Fontane et al., 1997). Artificial neural networks, which serve as black-box emulators of
larger models, have been combined with DP and NLP techniques to efficiently determine op-
timal operating schemes (Raman and Chandramouli , 1996). These techniques have all been
used in hydropower-related studies, but the literature is limited as many of these procedures
were only recently developed.

Multiobjective reservoir optimization applications seek to analyze the trade-off between
a variety of outcomes including power generation, flood control, and water supply/quality.
These problems have been solved using both classic and heuristic optimization methods.
Fontane et al. (1997) employed stochastic dynamic programming to quantify optimal op-
erations in terms of hydropower generation, flood control, water supply, and recreational
demands. Using genetic algorithms, Teegavarapu et al. (2013) analyzed the trade-offs be-
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tween power generation and downstream water quality and Liu et al. (2011) incorporated
minimization of flood risk.

Reservoirs with hydropower capabilities are generally operated with the primary goal
of maximizing energy production while meeting other legal water regulations (Jager and
Smith, 2008). More recent hydropower optimization studies have integrated constraints re-
lated to wildlife and water quality. The inclusion of water quality has been limited though;
such studies have not employed state-of-the-art two-dimensional high-fidelity water quality
models, but instead generally incorporate one-dimensional coarse-grid models or minimum
flow requirements deemed to support sufficient water quality (Jager and Smith, 2008). For
example, Hayes et al. (1998) integrated the quasi-2D coarse-grid water quality DORM-II
model of the upper Cumberland River basin in the southeastern United States into an opti-
mal control model to analyze water quality improvement opportunities through operational
changes. While computationally feasible, this work included simplifications such as 24 hour
periods of generation, stratification defined by two well-mixed vertical layers with no mixing
between layers, and simplified heat transfer and reaeration equations. Optimizing operations
for a single reservoir under simulated environmental constraints has proven computationally
challenging (Dhar and Datta, 2008). To date, high-fidelity water quality models have not
been incorporated within hydropower optimization on an operating timescale. Optimization
routines, both classic and heuristic, often require many objective and constraint evaluations;
this requirement hinders the use of computationally expensive models within these routines.
Some methods also require differentiable functions and linear relationships, which numerical
models cannot fulfill.

2.2 Artificial Neural Network Models

Feedforward artificial neural networks (ANNs) are flexible tools for function approximation
composed of neurons assembled into a multi-layer architecture. The neurons are multiple
linear regression models with a nonlinear transformation on the output. They have been
used for a variety of complex problems including speech and handwriting recognition, face
recognition, currency exchange rate prediction, chemical processes optimization, cancerous
cell identification, and spacecraft trajectory prediction (Cheng and Titterington, 1994). They
are often referred to as “black box models,” as they have no explicit function form and
are often used to simulate processes that the user does not know or cannot express as a
mathematical expression.

There are two main steps in constructing a neural network. First, the architecture must be
specified, and secondly, the network must be trained. Modelers specify the model architecture
through several parameters, including the number of hidden layers, number of neurons in
each hidden layer, and the form of transfer functions. Extensively testing a variety of network
structures can be computationally expensive; considering this, the appropriate architecture
of ANN applications in the literature are generally decided by trial-and-error. In a review of
response surface modeling literature Razavi et al. (2012) conclude that single hidden layer
ANNs are most popular for water resources applications.

ANNs can be used as inexact emulators for noisy data sources or exact emulators for
deterministic computer code. With a sufficiently large structure, ANNs can perform exact
emulation of deterministic code, but this may lead to poor performance in unsampled areas
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of the design space and a risk of overfitting (Razavi et al., 2012). ANNs are capable of
handling large amounts of training data and it is generally believed that additional input data
results in a better-generalized model; however, large amounts of data can require additional
computational time (Zou et al., 2007).

ANNs have been used as surrogate models in surface water resources operations and
design optimization problems previously. Saad et al. (1996) employed RBF neural networks
to decompose the optimal operating policies obtained through dynamic programming for a
reservoir system. Neelakantan and Pundarikanthan (1999) also used a neural network for
simulation of a reservoir system’s operation as substitution for a conventional simulation
model, with the goal of maximizing drinking water supply. The neural network model was
reported to run 300 times faster than the conventional model, and solving the optimization
problem took as long as 15 days of continuous computations using the conventional model,
but only a few hours with the neural network model. Castelletti et al. (2010) used response
surface methods, including neural networks, to emulate a 3-D hydrodynamic-ecological model
and optimize the number and location of water quality rehabilitation devices (i.e., mixers) in
order to improve overall water quality in a reservoir in Australia. The authors estimated it
would require 5.5 years to solve this problem on a modern computer using what-if analysis.

2.3 Genetic Algorithms

Genetic algorithms (GAs), first introduced by Holland (1975), are a family of algorithms
based on the mechanics of genetics and natural selection. They use a variety of methods
to transition from one generation population to the next, including inheritance, mutation,
selection, and crossover. Populations of candidate solutions are evolved toward better so-
lutions in an iterative process which rewards feasible, near-optimal solutions. Candidate
solutions are copied into the next generation, mutated, and combined stochastically based
on their assigned fitness levels. This attempts to balance exploration of solutions from new
areas of the design space and exploitation of solutions already found in regions of high fit-
ness. This process terminates when stopping criteria has been reached; examples of these
criteria include a maximum number of generations or solutions, a satisfactory fitness level,
or a population homogeneity level being reached. GAs are global optimizers able to solve
problems where functions are non-linear and discontinuous, as no derivatives are required.

One of the earliest introductions of GAs for hydropower operations comes from Esat and
Hall (1994), where GAs were used to solve the four-reservoir problem. This benchmark
problem concerns a system of four reservoirs, with both parallel and series connections,
operated over twelve 2 hour periods (a total of 24 hours), searching for optimal releases with
constraints related to flood control and turbine capacities. The authors concluded that as
system size increases, computational expense for discrete differential dynamic programming
(DDDP) increases exponentially while the expense of GAs increase linearly. Wardlaw and
Sharif (1999) solved the same four-reservoir problem as well as a more complex ten-reservoir
problem, testing sensitivities to various GA settings. Oliveira and Loucks (1997) combined
a genetic search algorithm with simulation models to determine optimal operating policy
rules for several multireservoir systems, focusing on satisfying joint water demands and
joint energy requirements. Similarly, Suiadee and Tingsanchali (2007) used a combined
simulation-GA optimization model to determine optimal monthly reservoir rule curves for a
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single reservoir in Thailand, with the objective function equal to the maximum net system
benefit subject to irrigation constraints and the monthly releases computed by the simulation
model.

More recently, hydropower optimization problems have been solved by GA in combina-
tion with surface water quality models. Kerachian and Karamouz (2007) determined optimal
operating rules for the Ghomrud Reservoir-River system in Iran for water quality manage-
ment using a stochastic GA-based conflict resolution technique. A one-dimensional water
quality model simulating thermal stratification and water quality at releases from different
outlets was used, as well as simulation of pollutants in the downstream river. This one-
dimensional model was based on the existing Ghomrud HEC-5Q model, which could not
be easily linked to the optimization model. Dhar and Datta (2008) linked a CE-QUAL-W2
model with an elitist genetic algorithm to determine optimal reservoir operation policy with
the aim of maintaining water quality downstream of the reservoir while minimizing the stor-
age deviation from target storage. The authors employed this method on a hypothetical
reservoir on the upstream end of the Middle Willamette River in Oregon, USA for daily op-
erating decisions over a 10 day management period. They concluded that the development
of parallel code or integration of metamodels, such as ANNs, could be useful at reducing
computational time and increasing the feasibility of solving larger, more complex reservoir
system operations problems.

3 Case Study Area

3.1 Cordell Hull and Old Hickory Reservoirs

Cordell Hull and Old Hickory reservoirs are run-of-the-river impounded projects located
on the Cumberland River, upstream of Nashville, Tennessee. A schematic of the Cumber-
land River system is shown in Figure 1. Cordell Hull’s primary purposes are navigation,
hydropower, and recreation. Cordell Hull dam has 3 Kaplan adjustable blade propeller tur-
bines and 5 tainter gates to allow for spill. Old Hickory’s primary purposes are navigation
and hydropower generation, but the impounded lake also serves as a form of recreation. The
dam’s outflow structures consist of 6 tainter gates and 4 Kaplan adjustable blade propeller
turbines. Both reservoirs are retained by a combination earthfill and concrete-gravity dam
(U.S. Army Corps of Engineers , 1998).

3.2 CE-QUAL-W2 Models

W2 models of Cordell Hull and Old Hickory reservoirs were obtained from the U.S. Army
Corps of Engineers Nashville District; upgraded to W2 version 3.5; calibrated over the year
1988 for Old Hickory and 2000 for Cordell Hull; and validated over the year 2005 for both
reservoirs. Calibration and validation were performed for water balance as well as in-pool
and discharge temperature and dissolved oxygen (DO).The plan view bathymetries for the
two models are shown in Figures 2 and 3, with Branch 1 representing the reservoir mainstem
in each case. Located on the Old Hickory reservoir, the Gallatin steam plant draws cooling
water from the mainstem and discharges heated water back into the mainstem, a process
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Figure 1: Projects on the Cumberland River System (courtesy of USACE Nashville District).

which is modeled as a reservoir withdrawal and one of the tributary inflows. The W2 models
require the following input data: inflow concentrations and flowrates, meteorological data,
wind sheltering and shade coefficients, sediment and friction coefficients, and bathymetry
data. The model can output hydrodynamic and water quality data as time series text files,
which is used to train surrogate models which can be implemented as constraints for reservoir
optimization.
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Figure 2: CE-QUAL-W2 Model Bathymetry for Cordell Hull Reservoir.

Figure 3: CE-QUAL-W2 Model Bathymetry for Old Hickory Reservoir.
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4 Water Quality Surrogate Models

4.1 Design of Experiments

The goal of the design of W2 experiments to support this effort was to provide sufficient
training data to demonstrate the functionality of the optimization tool. For each reservoir,
a design of experiments was created based on the concept of running W2 simulations under
various combinations of 6 dominant input conditions. These dominant inputs were deter-
mined through sensitivity testing. For each input file, three variations were considered, with
one of the variations identical to the “base case” 2005 values. Meteorological conditions
consisted of the 2005, 2006, and 2007 values. Inflow temperatures and dissolved oxygen
concentrations were increased and decreased by 5% from the “base case” values. Inflows
were not varied, but outflows were varied to create heavy spill and heavy turbine scenarios.
The heavy spill scenario was created by allocating 20% of the 2005 turbine outflow to the
spill gates, and the heavy turbine scenario was created by allocating 20% of the 2005 spill
outflow to the turbine structure outflow. Spill and turbine scenarios were not combined
exhaustively, but instead were paired to maintain an equivalent total outflow to maintain
water balance stability in the W2 simulations. This process means the surrogate model can
be used to explore the trade-off between releases through the turbines and spill gates. An
exhaustive combination of all variables, with the exception of the paired spill and turbine
inputs as explained, resulted in a total of 729 W2 model simulations for each reservoir. The
input file scenarios tested are shown in Table 1.

4.2 Simulation Automation and Data Management

To ensure variety and robustness in the training data, numerous W2 simulations were per-
formed as detailed earlier. It is especially critical to evaluate a variety of turbine and spill
flow scenarios, since this factor comprises the decision variable in the optimization algorithm
that will apply this surrogate model for water quality predictions. A large amount of W2
input and output data is required for neural network training. The Vanderbilt Institute
for Software Integrated Systems has assisted in this aspect of the project, developing W2
input file generation, W2 batch run, and W2 data collection automation tools. With the
W2 input generation tools, the project team now has the capabilities to edit most input files
and create simulation trials as defined by combinations of various input file scenarios. The
run automation tool specifies the executable to be used, specifies the location of the work-
ing directory for the simulations, and allows for parallel processing of a multiple simulation
set. The W2 data collection tool collects the data of interest from the various W2 input
and output text files into a set of comma-delimited csv files, which are easily imported into
MATLAB R© (R2014b, The MathWorks Inc., Natick, Massachusetts, United States).

4.3 NARX Models for Discharge Temperature and DO

A nonlinear autoregressive network with exogenous inputs (NARX) neural network model
can simulate time series predictions using training data obtained from W2 model runs. ANN
was selected for its ability to approximate time-dependent functions that are dependent upon
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Table 1: CE-QUAL-W2 Simulation Design of Experiments Input Scenarios.
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a large number of inputs, and for the training, visualization, and prediction tools available in
the MATLAB R© Neural Network Toolbox. This model relates past values of the same series
in the following way:

y(t) = f
(
y(t− 1), y(t− 2), . . . , y(t− ny), u(t− 1), u(t− 2), . . . , u(t− nu)

)
(1)

where y(t) is/are the variable(s) of interest and u(t) is/are the exogenous variable(s). f is a
nonlinear function, in our case an artificial neural network. In the equation as written, the
model is a function of feedback delays defined by the set [ny,1 : ny,2] and input delays defined
by the set [nu,1 : nu,2]. A NARX model can be used to simulate the tailwater dissolved
oxygen and temperature time series at Old Hickory reservoir over a desired period of time.

4.3.1 Training

Training data for the NARX model consist of W2 exogenous inputs and outputs. The
exogenous inputs included are those which the outputs have been determined to be sensitive
toward. Using the 2005 Cordell Hull and Old Hickory W2 models, correlation tests were
performed in order to narrow the set of exogenous inputs to the main driving factors and to
estimate the appropriate set of input delays. Figure 4 displays examples of cross correlations
between several exogenous inputs and Old Hickory discharge temperature at various lag
times. Inputs shown in (a), (b), and (c) are considered correlated with discharge temperature
and are included in the NARX model exogenous variables, while input (d) is not. An
input delay set of 1 and 12 hours was determined during correlation testing, as these delays
generally incorporates the maximum correlation between exogenous inputs and the discharge
temperature and dissolved oxygen outputs. The last network architecture features, the
number of hidden layers and neurons, are set to the MATLAB R© Neural Network Toolbox
default values of 1 and 10, respectively. A larger network may be able to provide more
accurate predictions for complex problems, but larger networks require more resources to
train and risk overfitting the data.

Network training is performed in two phases: open loop and closed loop. First, the
network is trained in open loop. The open loop architecture uses the already-available time
series of output values (in this case the discharge water quality predictions from W2) at
the appropriate feedback delays as inputs into the NARX model. This is not a realistic
architecture for prediction, as the full time series of output values are not known in advance,
but this training is performed first because it is computationally inexpensive and gives a
rough estimate of network weights and biases. Then the network is converted to closed loop
form and further trained, which requires considerably more computational time than open
loop training. Closed loop architecture uses previous NARX output estimates to construct
the feedback output values to be used as inputs for predictions at the next time step. This
is the process used during prediction, and training as a closed loop problem helps minimize
error propagation. Figure 5 provides visualizations of the network architecture as both
configurations. Note that the major difference between the two architectures is the source
of the lagged y(t) values. During both phases, the training data is randomly divided to
training (70%), validation (15%), and test (15%) sets. These percentages are the toolbox
default values for data division. Network biases and weights evolve during training based on
the data in the training set. Error on the validation set is computed during training, and
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Figure 4: Old Hickory Discharge Temperature Lagged Cross Correlation Test Examples for
(a) Turbine Outflow, (b) Branch 1 Inflow, (c) Air Temperature, and (d) Tributary 2 Inflow
with 95% Confidence Bounds.

when this converges training process terminates. The test set is not used directly during
training, but can be compared to the validation set during training and should have a similar
prediction performance.

The networks for each reservoir were trained and validated using hourly data from May-
September from the collection of 729 W2 simulations and the “base case” 2005 simulation.
70% of the runs were dedicated for training and 30% were saved for validation. Training
was performed on a 12 core server with Windows Server 2008 R2 Enterprise operating sys-
tem equipped with two 3.1 GHz AMD R© OpteronTM CPUs, employing MATLAB R© Parallel
Toolbox for parallel computations. The models are trained using an optimization algorithm
that incorporates a random process, so each network was trained a total of 5 times. After
5 resulting networks have been built and bias correction performed, an interior point con-
strained nonlinear optimization algorithm is employed to compute weights for the networks
(which sum to 1) that minimize the validation set error. Any networks with a weight less
than 25% of the maximum weight is removed and the weights are recomputed. This reduces
computational expense when the NARX models are deployed during reservoir operations
optimization by removing inferior networks from the set, while still maintaining a “family”
of networks that may provide better global predictions than a single trained network.
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Figure 5: Open Loop (Top) and Closed Loop (Bottom) Network Configurations for Old
Hickory Discharge Temperature Model.

4.3.2 Validation

As previously mentioned, 30% of the available W2 simulations were left out of the overall data
set used during training in order to use them for validation testing. Validation is an important
step to confirm there is no overfitting and allows one to quantify the predictive error of the
model on new input scenarios that are independent of those used for training. The predictive
error on this model set can be compared to the predictive error on the training data set.
For the temperature and dissolved oxygen models, the full 5 summer months of predictions
were made using the NARX models and then compared to the W2 simulation output. This
was performed for both the training (including all data from the NARX training, validation,
and test subsets) and validation simulation sets. The absolute mean error (AME) metrics
are provided in Table 2. AME is the error metric most often used to confirm the predictive
ability of W2 models. The training and validation sets have comparable error measurements,
suggesting the neural network models are performing well. These errors are also considerably
less than the thresholds typically thought of as representing a properly calibrated W2 model,
which are less than 1 ◦C error for temperature and less than 1.5 mg/L for dissolved oxygen
(Cole and Wells , 2007). Figure 6 provides examples of the NARX model predictions for two
validation runs as compared to W2 computed outputs for temperature and dissolved oxygen,
respectively. The predictions closely track the seasonal trends, but the models are unable to
reproduce major peaks. A larger neural network architecture may be able to better simulate
these complex scenarios, but further testing is needed to confirm this.
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Table 2: Absolute Mean Error (AME) for NARX Models for Training and Validation Sets.
Cordell Hull Old Hickory

Temperature Dissolved Oxygen Temperature Dissolved Oxygen
Training Set 0.208 ◦C 0.126 mg/L 0.246 ◦C 0.120 mg/L

Validation Set 0.208 ◦C 0.129 mg/L 0.247 ◦C 0.120 mg/L
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Figure 6: Examples of Validation Simulation Results for (a-b) Old Hickory Discharge Tem-
perature and (c-d) Old Hickory Discharge DO.
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5 Optimization Routine

5.1 Optimization Formulation

The optimization problem is formulated to determine turbine operations that generate the
maximum power value, subject to multiple constraints. This objective can be written as:

max
n∑

i=1

C(i) · xi · r (2)

where n is the number of hours in the planning period, C(i) is the power value at time i as
defined by a cost curve, xi is the number of active turbines at time i and is also the decision
variable, and r is the turbine power rating in megawatts (MW). The cost curve allows
the operator to define times of higher power value, which is important due to changes in
electricity demand and the use of hydropower traditionally as peaking power to supplement
thermal power production. The cost curve used in this experiment is shown in Figure 7. For
the two reservoirs in this problem, turbine power ratings were fixed at 33.3 MW for Cordell
Hull and 25 MW for Old Hickory. The problem is nonlinear with integer decision variables,
xi, representing the number of active turbines at each hourly time period i. Optimization
is performed for a defined planning period. The planning period is divided into daily sub-
problems, which are solved consecutively. This type of problem can be solved globally using
a GA with creation and mutation functions modified to produce populations consisting of
solely integer values for the decision variables.

Figure 7: Cost Curve.

The multipurpose reservoir system used to develop and demonstrate this optimization
process must be operated to fulfill many requirements. These can be formulated as a set
of hard constraints. Prior to determining the optimal operations for maximization of power
production for each daily sub-problem, the feasibility of each constraint is examined one
by one by solving a series of genetic algorithm optimization problems. In cases where a
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particular constraint cannot meet the constraint limit, the constraint limit is modified before
proceeding to power generation optimization. Additionally, soft constraints can be added
which the algorithm seeks to match, but if not able to be fulfilled completely the algorithm
will still proceed as normal. Soft constraints are integrated into the objective function by
use of a penalty parameter. Several hard constraints and a single soft constraint applied in
this problem are described below and summarized in Table 3. A flow chart of the detailed
optimization approach is given in Figure 8.

Table 3: Constraint Definitions and Settings.

The two case study reservoirs are operated on seasonal guide curves, where the power
pool has defined upper and lower bounds. These are accounted for in the pool elevations
constraint. The bathtub elevation model is a function of all inflows and outflows. An average
spill rate for each sub-problem is computed during elevation computations based on the user-
provided midnight target elevation values. First, water elevation is computed based on the
hourly turbine settings with zero water spilled through the gates. If the ending elevation
is less than the target elevation, spill remains zero. If the ending elevation is greater than
the target elevation, an average daily spill rate is assigned which results in the ending water
surface elevation being equal to the target value. This enables spill incorporation without
requiring additional decision variables, which is important since spill or gate flow is often
engaged to improve downstream water quality. In an effort to maintain minimum flows along
the river for water quality purposes, a constraint on the maximum number of consecutive
hours without power generation is applied to Old Hickory reservoir. Each reservoir has a
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defined limit on the hourly rate of change of active turbines, which minimize fluctuations
in the surface elevation and adverse impacts on pool stability. Each reservoir has a defined
number of available hydropower turbines, which is accounted for in the turbine bounds
constraint. A constraint to minimize oscillations over time is formulated with logic that states
that, except in cases of ramping turbines up or down, the number of active turbines must be
fixed for at least three hours consecutively before changing. This minimizes oscillations in the
solutions found, which is desired to minimize equipment wear. A constraint on water quality
exists, with the water quality predictions provided by NARX neural network models. This
constraint is currently formulated to check the feasibility of the discharge dissolved oxygen
at the end of each daily sub-problem time period for Old Hickory reservoir. The USACE
Nashville District monitors the dissolved oxygen levels in the Old Hickory dam discharge
and implements this constraint at that location. This is particularly important at the Old
Hickory discharge location, as this is directly upstream of the metropolitan Nashville area
and historically the water quality at this location has proven to be a strong indicator of
water quality system-wide.

A single soft constraint penalizes deviations below target midnight elevations. This keeps
the solution from draining to the bottom of the power pool at the end of each daily optimized
sub-problem. At the end of each daily sub-problem potential solution the pool elevation is
found, the penalty computed, and a deduction to the objective function value is made for
pool elevations below target levels. Prior to the start of the genetic algorithm solver, a
penalty coefficient is computed. The penalty coefficient value is greater the closer the target
pool elevation is to the bottom of the power pool. At the end of each day, the deviation
of pool elevation from the target elevation is multiplied by the penalty coefficient, and this
value is subtracted from the objective function power value.

5.2 Optimization Results

The optimization methodology described is demonstrated on the Cordell Hull and Old Hick-
ory linked reservoir system. The 10 day operating period from July 15 to July 25, 2005
(Julian days 196-206) was chosen. This time represents a period in the summer when wa-
ter quality issues appear within zones of the reservoirs and dam discharges. In order to
demonstrate the effectiveness of this tool for improving water quality and the impact that
high-fidelity water quality model incorporation can have on optimal power generation solu-
tions, the algorithm was used to determine the optimal hourly turbine operations for both
reservoirs, as well as a daily average spill flowrate for each, with a constraint on water quality
incorporated by use of NARX neural network models.

The optimal turbine operations and spill operations for this period, as well as the re-
sulting water surface elevations, discharge temperatures, and discharge dissolved oxygen
concentrations, are shown in Figures 9 and 10. Water quality estimations provided by the
NARX models should be confirmed by W2 simulations. The optimal solution is compared
to projected operations (or in this case, the actual operations from 2005). In this trial, the
optimal solution produces less overall power (15,050 MWh as compared to 18,783 MWh
from the projected operations) and the average power value per MWh produced for the opti-
mal and projected scenarios are comparable at $76.05/MWh and $78.55/MWh, respectively.
However, the optimized solution maintains dissolved oxygen concentrations at or above the
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8 mg/L constraint threshold. The loss in power production results from the addition of
spill, which enables the improvement in water quality. Additionally, the pool elevation is
maintained at the same level for both projected and optimal operations at the end of the
operating period. The Old Hickory discharge DO predictions are maintained at or above the
constraint threshold of 8 mg/L. It is important to note that these results represent an initial
optimization trial; the water quality predictions should be validated using a W2 simula-
tion, and if necessary the NARX water quality predictors retrained using the W2 validation
simulation data.

Figure 9: Cordell Hull Reservoir Optimization Results.

Optimizing the reservoir system over the 10 day operating period, formulated as a series
of daily sub-problems, required a total of 201,804 evaluations of objective and constraint
function pairs. Based on a required computational time of 26 minutes to complete W2
model runs for both reservoirs for a simulation period of a year, the time required to make a
W2 simulation from January 1, 2005 through July 25, 2005, or roughly half of a calendar year,
would be approximately 13 minutes. To provide 201,804 water quality predictions via W2
would require around 5 years of computational time. The entire optimization methodology
demonstrated here, in total, required approximately 6.6 hours on the same desktop computer.
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Figure 10: Old Hickory Reservoir Optimization Results.

6 Conclusions and Future Work

This work has demonstrated a process for emulating the water quality predictions of a high-
fidelity water quality model, in this case CE-QUAL-W2, using an artificial neural network
model. The nonlinear autoregressive with exogenous inputs (NARX) network model form,
available in the Matlab R© Neural Network Toolbox, was employed. Emulators for discharge
temperature and discharge dissolved oxygen were constructed, and validation tests confirm
these models provide useful predictive power.

This efficient NARX surrogate model was incorporated into a hydropower generation
optimization routine, a process requiring a large number of model evaluations. This is not
possible using the original, computationally expensive CE-QUAL-W2 hydrodynamic and
water quality simulation model. Optimization was demonstrated on a two-reservoir system
in series, a subset of the projects on the Cumberland River system. Use of the NARX models
provides considerable computational efficiency over the original high-fidelity models. Even
though validation tests performed during training suggest useful predictive power, when
implementing these NARX models for prediction the solution should be confirmed with the
original simulation model, as the optimization routine could “travel” to areas in the decision
space with poor training coverage.

For the case study presented here, dissolved oxygen is the constituent of concern; how-
ever, this methodology could be applied to other water quality concerns and incorporate
different high-fidelity simulation models. Additionally, the water quality constraint in this
demonstration was applied at the tailwater discharge of one of the linked reservoirs, but this
process could easily incorporate in-pool water quality constraints. This would be useful for
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optimizing systems where the temperature or water quality at a fixed location of an intake
pipe is important.

This optimization process was first developed for a single case study reservoir and was
then expanded to the linked system, as discussed here. There is value in expanding the
process to even larger river systems; however, the computational expense will continue to
increase substantially and minimizes the usefulness of this method for real-time river plan-
ning. Model reduction methods, such as fixed-point iterative techniques, will be explored
to assist in optimization of larger multireservoir systems. This will enable optimization of
power production along river systems, subject to numerous constraints including high-fidelity
simulation-informed constraints on water quality.
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